Skip to main content

Superoxide Dismutase Family of Enzymes in Brain Neurogenesis and Radioprotection

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

The family of superoxide dismutases (SODs) have an almost ubiquitous presence in living organisms. Their importance in maintaining normal cellular functions and fate decisions has been demonstrated in a large number of studies since their discovery in 1968. Studies of pathological conditions resulting from naturally occurring SOD mutations in human populations or from altered SOD levels created in animal models further highlighted the critical roles of SODs in maintaining the redox balance for normal tissue functions. The production of adult-born neurons in the hippocampus is important for the neuronal plasticity of learning and memory, and yet the process is exquisitely sensitive to changes in the redox balance in its microenvironment. Consequently, mutant mice deficient in CuZnSOD or MnSOD showed altered progenitor cell differentiation towards the astroglial, instead of the neuronal, lineage, while EC-SOD deficient mice exhibited a significant reduction in the production of newborn neurons. Similarly, ionizing radiation, even at low doses, led to persistent perturbation of the tissue redox environment and suppression of hippocampal neurogenesis. The defects in hippocampal neurogenesis resulting from EC-SOD deficiency or ionizing irradiation also correlated with impairments in hippocampal-dependent functions of learning and memory. To correct the persistent redox imbalance following irradiation, enhanced EC-SOD levels in mature hippocampal neurons were achieved by transgenic approach. The transgenic mice were able to minimize irradiation-induced suppression of hippocampal neurogenesis and the associated cognitive defects, suggesting that SOD-based antioxidant supplementation may be an efficacious therapeutic approach to CNS defects following ionizing radiation therapy. The new generation Mn-containing porphyrins had been demonstrated to possess high SOD-like activities, and some of them were able to cross the blood brain barrier. Their radioprotective capacity had been demonstrated in a number of tissues in radiation animal models. Application of Mn porphyrins for the preservation of hippocampal neurogenesis and cognitive functions in experimental models will increase their potential relevance towards human radiation therapy of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fridovich I. Superoxide dismutases. Adv Enzymol Relat Areas Mol Biol. 1986;58:61–97.

    CAS  PubMed  Google Scholar 

  2. Tally FP, et al. Superoxide dismutase in anaerobic bacteria of clinical significance. Infect Immun. 1977;16(1):20–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lynch M, Kuramitsu H. Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microbes Infect. 2000;2(10):1245–55.

    Article  CAS  PubMed  Google Scholar 

  4. Fink RC, Scandalios JG. Molecular evolution and structure—function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys. 2002;399(1):19–36.

    Article  CAS  PubMed  Google Scholar 

  5. Fukuhara R, Tezuka T, Kageyama T. Structure, molecular evolution, and gene expression of primate superoxide dismutases. Gene. 2002;296(1–2):99–109.

    Article  CAS  PubMed  Google Scholar 

  6. Slot JW, et al. Intracellular localization of the copper-zinc and manganese superoxide dismutases in rat liver parenchymal cells. Lab Invest. 1986;55(3):363–71.

    CAS  PubMed  Google Scholar 

  7. Oury TD, et al. Human extracellular superoxide dismutase is a tetramer composed of two disulphide-linked dimers: a simplified, high-yield purification of extracellular superoxide dismutase. Biochem J. 1996;317(Pt 1):51–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tafuri F, et al. SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 2015;9:336.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sutton A, et al. The Ala16Val genetic dimorphism modulates the import of human manganese superoxide dismutase into rat liver mitochondria. Pharmacogenetics. 2003;13(3):145–57.

    Article  CAS  PubMed  Google Scholar 

  10. Borgstahl GE, et al. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry. 1996;35(14):4287–97.

    Article  CAS  PubMed  Google Scholar 

  11. Dhar SK, Clair DKS. Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med. 2012;52(11–12):2209–22.

    Article  CAS  PubMed  Google Scholar 

  12. Iguchi T, et al. Association of MnSOD AA genotype with the progression of prostate cancer. PLoS One. 2015;10(7), e0131325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Moradi MT, et al. Manganese superoxide dismutase (MnSOD Val-9Ala) gene polymorphism and susceptibility to gastric cancer. Asian Pac J Cancer Prev. 2015;16(2):485–8.

    Article  PubMed  Google Scholar 

  14. Atilgan D, et al. The relationship between ALA16VAL single gene polymorphism and renal cell carcinoma. Adv Urol. 2014;2014:932481.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bresciani G, et al. The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Free Radic Res. 2013;47(10):781–92.

    Article  CAS  PubMed  Google Scholar 

  16. Sandstrom J, et al. 10-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J Biol Chem. 1994;269(29):19163–6.

    CAS  PubMed  Google Scholar 

  17. Yamada H, et al. Molecular analysis of extracellular-superoxide dismutase gene associated with high level in serum. Jpn J Hum Genet. 1995;40(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  18. Juul K, et al. Genetically reduced antioxidative protection and increased ischemic heart disease risk: The Copenhagen City Heart Study. Circulation. 2004;109(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura M, et al. Role of extracellular superoxide dismutase in patients under maintenance hemodialysis. Nephron Clin Pract. 2005;101(3):c109–15.

    Article  CAS  PubMed  Google Scholar 

  20. Juul K, et al. Genetically increased antioxidative protection and decreased chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  21. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 1999.

    Google Scholar 

  22. Halliwell B, Cross CE. Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect. 1994;102 Suppl 10:5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knight JA. Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci. 1998;28(6):331–46.

    CAS  PubMed  Google Scholar 

  24. Wallace DC, Melov S. Radicals r’aging. Nat Genet. 1998;19(2):105–6.

    Article  CAS  PubMed  Google Scholar 

  25. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rhee SG, Woo HA. Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H(2)O(2), and protein chaperones. Antioxid Redox Signal. 2011;15(3):781–94.

    Article  CAS  PubMed  Google Scholar 

  27. Sarsour EH, et al. Redox control of the cell cycle in health and disease. Antioxid Redox Signal. 2009;11(12):2985–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sarsour EH, et al. Manganese superoxide dismutase activity regulates transitions between quiescent and proliferative growth. Aging Cell. 2008;7(3):405–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Prozorovski T, et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol. 2008;10(4):385–94.

    Article  CAS  PubMed  Google Scholar 

  30. Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.

    Article  CAS  PubMed  Google Scholar 

  31. van Praag H, et al. Functional neurogenesis in the adult hippocampus. Nature. 2002;415(6875):1030–4.

    Article  PubMed  CAS  Google Scholar 

  32. Ben Abdallah NM, et al. Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging. 2010;31(1):151–61.

    Article  PubMed  Google Scholar 

  33. Wang K, et al. Redox homeostasis: the linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 2013;4:e537.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Noble M, Mayer-Proschel M, Proschel C. Redox regulation of precursor cell function: insights and paradoxes. Antioxid Redox Signal. 2005;7(11–12):1456–67.

    Article  CAS  PubMed  Google Scholar 

  35. Noble M, et al. Redox state as a central modulator of precursor cell function. Ann N Y Acad Sci. 2003;991:251–71.

    Article  CAS  PubMed  Google Scholar 

  36. Smith J, et al. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S A. 2000;97(18):10032–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoneyama M, et al. Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int. 2010;56(6–7):740–6.

    Article  CAS  PubMed  Google Scholar 

  38. Le Belle JE, et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell. 2011;8(1):59–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386:493–5.

    Article  CAS  PubMed  Google Scholar 

  40. van Praag H, et al. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):13427–31.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kempermann G. Why new neurons? Possible functions for adult hippocampal neurogenesis. J Neurosci. 2002;22(3):635–8.

    CAS  PubMed  Google Scholar 

  42. Kempermann G, Brandon EP, Gage FH. Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus. Curr Biol. 1998;8(16):939–42.

    Article  CAS  PubMed  Google Scholar 

  43. Kempermann G, Kuhn HG, Gage FH. Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci. 1998;18(9):3206–12.

    CAS  PubMed  Google Scholar 

  44. Prickaerts J, et al. Learning and adult neurogenesis: survival with or without proliferation? Neurobiol Learn Mem. 2004;81(1):1–11.

    Article  PubMed  Google Scholar 

  45. Kee N, et al. Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat Neurosci. 2007;10(3):355–62.

    Article  CAS  PubMed  Google Scholar 

  46. Jinno S. Topographic differences in adult neurogenesis in the mouse hippocampus: a stereology-based study using endogenous markers. Hippocampus. 2011;21(5):467–80.

    Article  PubMed  Google Scholar 

  47. Burger C. Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci. 2010;2:140.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Huang TT, et al. Transgenic and mutant mice for oxygen free radical studies. Methods Enzymol. 2002;349:191–213.

    Article  CAS  PubMed  Google Scholar 

  49. Misawa H, et al. Conditional knockout of Mn superoxide dismutase in postnatal motor neurons reveals resistance to mitochondrial generated superoxide radicals. Neurobiol Dis. 2006;23(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  50. Oury TD, Day BJ, Crapo JD. Extracellular superoxide dismutase in vessels and airways of humans and baboons. Free Radic Biol Med. 1996;20(7):957–65.

    Article  CAS  PubMed  Google Scholar 

  51. Zou Y, et al. A new mouse model for temporal- and tissue-specific control of extracellular superoxide dismutase. Genesis. 2009;47(3):142–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Carlsson LM, et al. Mice lacking extracellular superoxide dismutase are more sensitive to hyperoxia. Proc Natl Acad Sci U S A. 1995;92(14):6264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sakellariou GK, et al. Neuron-specific expression of CuZnSOD prevents the loss of muscle mass and function that occurs in homozygous CuZnSOD-knockout mice. FASEB J. 2014;28(4):1666–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Raineri I, et al. Strain-dependent high-level expression of a transgene for manganese superoxide dismutase is associated with growth retardation and decreased fertility. Free Radic Biol Med. 2001;31(8):1018–30.

    Article  CAS  PubMed  Google Scholar 

  55. Yen HC, et al. The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest. 1996;98(5):1253–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim A, et al. Enhanced expression of mitochondrial superoxide dismutase leads to prolonged in vivo cell cycle progression and up-regulation of mitochondrial thioredoxin. Free Radic Biol Med. 2010;48(11):1501–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Corniola R, et al. Paradoxical relationship between Mn superoxide dismutase deficiency and radiation-induced cognitive defects. PLoS One. 2012;7(11), e49367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fishman K, et al. Radiation-induced reductions in neurogenesis are ameliorated in mice deficient in CuZnSOD or MnSOD. Free Radic Biol Med. 2009;47(10):1459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rola R, et al. Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis. Free Radic Biol Med. 2007;42(8):1133–45; discussion 1131–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zou Y, et al. Extracellular superoxide dismutase is important for hippocampal neurogenesis and preservation of cognitive functions after irradiation. Proc Natl Acad Sci U S A. 2012;109(52):21522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Raber J, et al. Irradiation enhances hippocampus-dependent cognition in mice deficient in extracellular superoxide dismutase. Hippocampus. 2011;21(1):72–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  63. Azzam EI, Jay-Gerin JP, Pain D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett. 2012;327(1–2):48–60.

    Article  CAS  PubMed  Google Scholar 

  64. Phillis JW, Horrocks LA, Farooqui AA. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev. 2006;52(2):201–43.

    Article  CAS  PubMed  Google Scholar 

  65. Sorce S, Krause KH. NOX enzymes in the central nervous system: from signaling to disease. Antioxid Redox Signal. 2009;11(10):2481–504.

    Article  CAS  PubMed  Google Scholar 

  66. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    Article  CAS  PubMed  Google Scholar 

  67. Chargari C, et al. Whole-brain radiation therapy in breast cancer patients with brain metastases. Nat Rev Clin Oncol. 2010;7(11):632–40.

    Article  PubMed  Google Scholar 

  68. Quan AL, Videtic GM, Suh JH. Brain metastases in small cell lung cancer. Oncology (Williston Park). 2004;18(8):961–72; discussion 974, 979–80, 987.

    Google Scholar 

  69. Sheline GE, Wara WM, Smith V. Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys. 1980;6(9):1215–28.

    Article  CAS  PubMed  Google Scholar 

  70. Grill J, et al. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int J Radiat Oncol Biol Phys. 1999;45(1):137–45.

    Article  CAS  PubMed  Google Scholar 

  71. Meyers CA, et al. Neurocognitive effects of therapeutic irradiation for base of skull tumors. Int J Radiat Oncol Biol Phys. 2000;46(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  72. Surma-aho O, et al. Adverse long-term effects of brain radiotherapy in adult low-grade glioma patients. Neurology. 2001;56(10):1285–90.

    Article  CAS  PubMed  Google Scholar 

  73. Limoli CL, et al. Redox changes induced in hippocampal precursor cells by heavy ion irradiation. Radiat Environ Biophys. 2007;46(2):167–72.

    Article  CAS  PubMed  Google Scholar 

  74. Panagiotakos G, et al. Long-term impact of radiation on the stem cell and oligodendrocyte precursors in the brain. PLoS One. 2007;2(7), e588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Abayomi OK. Pathogenesis of irradiation-induced cognitive dysfunction. Acta Oncol. 1996;35(6):659–63.

    Article  CAS  PubMed  Google Scholar 

  76. Belarbi K, et al. CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation. Cancer Res. 2013;73(3):1201–10.

    Article  CAS  PubMed  Google Scholar 

  77. Lee SW, et al. Absence of CCL2 is sufficient to restore hippocampal neurogenesis following cranial irradiation. Brain Behav Immun. 2013;30:33–44.

    Article  CAS  PubMed  Google Scholar 

  78. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.

    Article  CAS  PubMed  Google Scholar 

  79. Greenberger JS, Epperly MW. Review. Antioxidant gene therapeutic approaches to normal tissue radioprotection and tumor radiosensitization. In Vivo. 2007;21(2):141–6.

    CAS  PubMed  Google Scholar 

  80. Eldridge A, et al. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection. Free Radic Biol Med. 2012;53(10):1838–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Breuer R, et al. Superoxide dismutase inhibits radiation-induced lung injury in hamsters. Lung. 1992;170(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  82. Xiao X, et al. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells. Stem Cells Dev. 2015;24(11):1342–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jelveh S, et al. Investigations of antioxidant-mediated protection and mitigation of radiation-induced DNA damage and lipid peroxidation in murine skin. Int J Radiat Biol. 2013;89(8):618–27.

    Article  CAS  PubMed  Google Scholar 

  84. Diehn M, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Moreno-Flores MT, et al. Semaphorin 3C preserves survival and induces neuritogenesis of cerebellar granule neurons in culture. J Neurochem. 2003;87(4):879–90.

    Article  CAS  PubMed  Google Scholar 

  86. Steup A, et al. Sema3C and netrin-1 differentially affect axon growth in the hippocampal formation. Mol Cell Neurosci. 2000;15(2):141–55.

    Article  CAS  PubMed  Google Scholar 

  87. Vaitkiene P, et al. High level of Sema3C is associated with glioma malignancy. Diagn Pathol. 2015;10:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5(9):a009159.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Hara Y, et al. Impaired hippocampal neurogenesis and vascular formation in ephrin-A5-deficient mice. Stem Cells. 2010;28(5):974–83.

    CAS  PubMed  Google Scholar 

  90. Decressac M, et al. NURR1 in Parkinson disease—from pathogenesis to therapeutic potential. Nat Rev Neurol. 2013;9(11):629–36.

    Article  CAS  PubMed  Google Scholar 

  91. Pena de Ortiz S, Maldonado-Vlaar CS, Carrasquillo Y. Hippocampal expression of the orphan nuclear receptor gene hzf-3/nurr1 during spatial discrimination learning. Neurobiol Learn Mem. 2000;74(2):161–78.

    Article  CAS  PubMed  Google Scholar 

  92. Aldavert-Vera L, et al. Intracranial self-stimulation facilitates active-avoidance retention and induces expression of c-Fos and Nurr1 in rat brain memory systems. Behav Brain Res. 2013;250:46–57.

    Article  CAS  PubMed  Google Scholar 

  93. Colon-Cesario WI, et al. Knockdown of Nurr1 in the rat hippocampus: implications to spatial discrimination learning and memory. Learn Mem. 2006;13(6):734–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Ji S, et al. Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription. Brain Res. 2014;1577:77–88.

    Article  CAS  PubMed  Google Scholar 

  95. Batinic-Haberle I, et al. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids. 2010;42(1):95–113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Mao XW, et al. Radioprotective effect of a metalloporphyrin compound in rat eye model. Curr Eye Res. 2009;34(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  97. Li H, et al. Mn(III) meso-tetrakis-(N-ethylpyridinium-2-yl) porphyrin mitigates total body irradiation-induced long-term bone marrow suppression. Free Radic Biol Med. 2011;51(1):30–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gauter-Fleckenstein B, et al. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med. 2010;48(8):1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ashcraft KA, et al. Novel manganese-porphyrin superoxide dismutase-mimetic widens the therapeutic margin in a preclinical head and neck cancer model. Int J Radiat Oncol Biol Phys. 2015;93(4):892–900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Batinic-Haberle I, et al. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20(15):2372–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang P, et al. 229—Mitigation of radiation-mediated suppression of hippocampal neurogenesis. Free Radic Biol Med. 2014;76 Suppl 1:S97.

    Article  Google Scholar 

  102. Weitzel DH, et al. Radioprotection of the brain white matter by Mn(III) n-Butoxyethylpyridylporphyrin-based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol Cancer Ther. 2015;14(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  103. Epstein CJ, et al. Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc Natl Acad Sci U S A. 1987;84(22):8044–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Shi YP, et al. The mapping of transgenes by fluorescence in situ hybridization on G-banded mouse chromosomes. Mamm Genome. 1994;5(6):337–41.

    Article  CAS  PubMed  Google Scholar 

  105. Gurney ME, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science. 1994;264(5166):1772–5.

    Article  CAS  PubMed  Google Scholar 

  106. Chan PH, et al. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci. 1998;18(20):8292–9.

    CAS  PubMed  Google Scholar 

  107. Fischer LR, et al. SOD1 targeted to the mitochondrial intermembrane space prevents motor neuropathy in the Sod1 knockout mouse. Brain. 2011;134(Pt 1):196–209.

    Article  PubMed  Google Scholar 

  108. Huang TT, et al. Superoxide-mediated cytotoxicity in superoxide dismutase-deficient fetal fibroblasts. Arch Biochem Biophys. 1997;344(2):424–32.

    Article  CAS  PubMed  Google Scholar 

  109. Matzuk MM, et al. Ovarian function in superoxide dismutase 1 and 2 knockout mice. Endocrinology. 1998;139(9):4008–11.

    Article  CAS  PubMed  Google Scholar 

  110. Chen H, Li X, Epstein PN. MnSOD and catalase transgenes demonstrate that protection of islets from oxidative stress does not alter cytokine toxicity. Diabetes. 2005;54(5):1437–46.

    Article  CAS  PubMed  Google Scholar 

  111. Shen X, et al. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes. 2006;55(3):798–805.

    Article  CAS  PubMed  Google Scholar 

  112. Li Y, et al. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet. 1995;11(4):376–81.

    Article  CAS  PubMed  Google Scholar 

  113. Lebovitz RM, et al. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci U S A. 1996;93(18):9782–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ikegami T, et al. Model mice for tissue-specific deletion of the manganese superoxide dismutase (MnSOD) gene. Biochem Biophys Res Commun. 2002;296(3):729–36.

    Article  CAS  PubMed  Google Scholar 

  115. Epperly MW, et al. Conditional radioresistance of tet-inducible manganese superoxide dismutase bone marrow stromal cell lines. Radiat Res. 2013;180(2):189–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Oury TD, et al. Extracellular superoxide dismutase, nitric oxide, and central nervous system O2 toxicity. Proc Natl Acad Sci U S A. 1992;89(20):9715–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Ting Huang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nguyen, H., Srinivasan, C., Huang, TT. (2016). Superoxide Dismutase Family of Enzymes in Brain Neurogenesis and Radioprotection. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_5

Download citation

Publish with us

Policies and ethics