Skip to main content

Regulation of the Cellular Redox Environment by Superoxide Dismutases, Catalase, and Glutathione Peroxidases During Tumor Metastasis

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

The lethality of most cancers can be attributed to metastatic progression. Metastatic tumor cells adapt and cope with various stressful environments to enable survival during their metastatic journey which starts with the escape from the primary tumor and ends in colonization of secondary sites. Stressors of metastatic tumor microenvironments include deprivation of oxygen (hypoxia), inflammation, and chemo- and radiotherapeutic exposure, which have the propensity to expose cells to reactive oxygen species (ROS). Further, many tumor-associated cells, including cancer-associated fibroblasts, macrophages, and senescent cells within the tumor microenvironment, contribute to this ROS production. In addition to these exogenous sources, tumor cells themselves produce and are able to cope with elevated intracellular ROS. Increased ROS production outside and within metastatic tumor cells has been associated with a number of pro-metastatic events including angiogenesis, invasion, migration, survival, and anchorage-independent cell survival (anoikis resistance). Large surges of ROS can lead to oxidation of macromolecules and largely irreversible damage that may cause mitochondrial damage, leading to alterations in cancer metabolism, and genomic instability and carcinogenesis. More subtle changes in ROS lead to redox-signaling, primarily by reversible oxidation of thiols, which has been shown to contribute to pro-metastatic behavior. To cope with these changes in both intracellular and extracellular redox environments, tumor cells have uniquely evolved to alter their antioxidant enzyme expression. The present review focuses on antioxidant enzymes important in the regulation of H2O2 balance within metastatic tumor cells. It aims to highlight some of the dichotomous roles demonstrated for these enzymes in cancer etiology, and how their enzymatic activity may further influence the tumor redox environment and consequently regulate carcinogenesis and metastasis. We focus on the role of superoxide dismutases, catalase, and glutathione peroxidases and give examples on their demonstrated roles as both tumor suppressors and promoters. Specifically, we discuss how metastatic cancer cells uniquely adapt to alter expression of these enzymes and how this may contribute to changes in the intracellular redox environment to drive certain metastatic phenotypes. To therapeutically target these ROS-mediated pathways in metastatic disease will require further insights into the specificity of the ROS involved and their spatiotemporal regulation in the context of the antioxidant enzymes present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AhR:

Aryl hydrocarbon receptor

AML:

Acute myelogenous leukemia

AMPK:

AMP activated-kinase A

Cat:

Catalase

CRPC:

Castration-resistant prostate cancer

CuZnSod/Sod1:

Cytosolic/Copper-Zinc superoxide dismutase

EcSod/Sod3:

Extracellular superoxide dismutase

EMT:

Epithelial to mesenchymal transition

fALS:

Familial amyotrophic lateral sclerosis

FAK:

Focal adhesion kinase

Foxo:

Forkhead box O

GAC:

Gastric adenocarcinoma

GPx:

Glutathione peroxidases

GR:

Glutathione reductase

GSH:

Glutathione

HCC:

Hepatocellular carcinoma

H2O2 :

Hydrogen peroxide

iNOS:

Inducible nitric oxide synthase

IL-6:

Interleukin-6

Keap1:

Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1

MAPK:

Mitogen-activated protein kinase

MMP-1:

Matrix metalloproteinase 1

MnSod/Sod2:

Mitochondrial/Manganese superoxide dismutase

mTOR:

Mechanistic target of rapamycin

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor κ B

Nox:

NADPH oxidase

Nrf2:

Nuclear factor erythroid 2 (NF-E2)-related factor 2

O2 :

Oxygen

O2 •− :

Superoxide

OH• :

Hydroxyl radical

ONOO− :

Peroxynitrite

PI3K:

Phosphoinositide 3-kinase

PKB:

Protein kinase B (also known as Akt)

PHD:

Prolyl hydroxylase

PPAR α:

Peroxisome proliferator activated receptor α

PTP:

Protein tyrosine phosphatases

SBP1:

Selenium-binding protein 1

SNPs:

Single nucleotide polymorphisms

Sod:

Superoxide dismutase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TM:

Tetrathiomolybdate

TNF-α:

Tumor necrosis factor α

TRX:

Thioredoxin

UCP:

Mitochondrial uncoupling proteins

WT1:

Wilm’s tumor suppressor 1

References

  1. Sosa V, Moline T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: an overview. Ageing Res Rev. 2013;12(1):376–90.

    Article  CAS  PubMed  Google Scholar 

  2. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR. p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell. 2007;11(2):191–205.

    Article  CAS  PubMed  Google Scholar 

  3. Zieba M, Suwalski M, Kwiatkowska S, Piasecka G, Grzelewska-Rzymowska I, Stolarek R, Nowak D. Comparison of hydrogen peroxide generation and the content of lipid peroxidation products in lung cancer tissue and pulmonary parenchyma. Respir Med. 2000;94(8):800–5.

    Article  CAS  PubMed  Google Scholar 

  4. Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991;51(3):794–8.

    CAS  PubMed  Google Scholar 

  5. Lim SD, Sun C, Lambeth JD, Marshall F, Amin M, Chung L, Petros JA, Arnold RS. Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate. 2005;62(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  6. Xiong P, Li YX, Tang YT, Chen HG. Proteomic analyses of Sirt1-mediated cisplatin resistance in OSCC cell line. Protein J. 2011;30(7):499–508.

    Article  CAS  PubMed  Google Scholar 

  7. Benlloch M, Mena S, Ferrer P, Obrador E, Asensi M, Pellicer JA, Carretero J, Ortega A, Estrela JM. Bcl-2 and Mn-SOD antisense oligodeoxynucleotides and a glutamine-enriched diet facilitate elimination of highly resistant B16 melanoma cells by tumor necrosis factor-alpha and chemotherapy. J Biol Chem. 2006;281(1):69–79.

    Article  CAS  PubMed  Google Scholar 

  8. Hur GC, Cho SJ, Kim CH, Kim MK, Bae SI, Nam SY, Park JW, Kim WH, Lee BL. Manganese superoxide dismutase expression correlates with chemosensitivity in human gastric cancer cell lines. Clin Cancer Res. 2003;9(15):5768–75.

    CAS  PubMed  Google Scholar 

  9. Suresh A, Guedez L, Moreb J, Zucali J. Overexpression of manganese superoxide dismutase promotes survival in cell lines after doxorubicin treatment. Br J Haematol. 2003;120(3):457–63.

    Article  CAS  PubMed  Google Scholar 

  10. Izutani R, Kato M, Asano S, Imano M, Ohyanagi H. Expression of manganese superoxide dismutase influences chemosensitivity in esophageal and gastric cancers. Cancer Detect Prev. 2002;26(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  11. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. Tumor and its microenvironment: a synergistic interplay. Semin Cancer Biol. 2013;23(6 Pt B):522–32.

    Article  CAS  PubMed  Google Scholar 

  12. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem. 2000;275(33):25130–8.

    Article  CAS  PubMed  Google Scholar 

  13. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 2005;1(6):401–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bell EL, Klimova TA, Eisenbart J, Moraes CT, Murphy MP, Budinger GR, Chandel NS. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177(6):1029–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emerling BM, Platanias LC, Black E, Nebreda AR, Davis RJ, Chandel NS. Mitochondrial reactive oxygen species activation of p38 mitogen-activated protein kinase is required for hypoxia signaling. Mol Cell Biol. 2005;25(12):4853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F. JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell. 2004;118(6):781–94.

    Article  CAS  PubMed  Google Scholar 

  17. Pan Y, Mansfield KD, Bertozzi CC, Rudenko V, Chan DA, Giaccia AJ, Simon MC. Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Mol Cell Biol. 2007;27(3):912–25.

    Article  CAS  PubMed  Google Scholar 

  18. Yasinska IM, Sumbayev VV. S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett. 2003;549(1–3):105–9.

    Article  CAS  PubMed  Google Scholar 

  19. Block K, Gorin Y, Hoover P, Williams P, Chelmicki T, Clark RA, Yoneda T, Abboud HE. NAD(P)H oxidases regulate HIF-2alpha protein expression. J Biol Chem. 2007;282(11):8019–26.

    Article  CAS  PubMed  Google Scholar 

  20. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, Garcia JA. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1. Science. 2009;324(5932):1289–93.

    Article  CAS  PubMed  Google Scholar 

  21. Hamanaka RB, Chandel NS. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci. 2010;35(9):505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poyton RO, Ball KA, Castello PR. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol Metab. 2009;20(7):332–40.

    Article  CAS  PubMed  Google Scholar 

  23. Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S, Kim Y, Luo JL, Karin M. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457(7225):102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA. Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res. 2014;2014:149185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pani G, Galeotti T, Chiarugi P. Metastasis: cancer cell’s escape from oxidative stress. Cancer Metastasis Rev. 2010;29(2):351–78.

    Article  CAS  PubMed  Google Scholar 

  26. Hempel N, Ye H, Abessi B, Mian B, Melendez JA. Altered redox status accompanies progression to metastatic human bladder cancer. Free Radic Biol Med. 2009;46(1):42–50.

    Article  CAS  PubMed  Google Scholar 

  27. Weyemi U, Redon CE, Parekh PR, Dupuy C, Bonner WM. NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy. Anticancer Agents Med Chem. 2013;13(3):502–14.

    CAS  PubMed  Google Scholar 

  28. Block K, Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer. 2012;12(9):627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Polytarchou C, Hatziapostolou M, Papadimitriou E. Hydrogen peroxide stimulates proliferation and migration of human prostate cancer cells through activation of activator protein-1 and up-regulation of the heparin affin regulatory peptide gene. J Biol Chem. 2005;280(49):40428–35.

    Article  CAS  PubMed  Google Scholar 

  30. Connor KM, Hempel N, Nelson KK, Dabiri G, Gamarra A, Belarmino J, Van De Water L, Mian BM, Melendez JA. Manganese superoxide dismutase enhances the invasive and migratory activity of tumor cells. Cancer Res. 2007;67(21):10260–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hempel N, Bartling TR, Mian B, Melendez JA. Acquisition of the metastatic phenotype is accompanied by H2O2-dependent activation of the p130Cas signaling complex. Mol Cancer Res. 2013;11(3):303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nelson KK, Ranganathan AC, Mansouri J, Rodriguez AM, Providence KM, Rutter JL, Pumiglia K, Bennett JA, Melendez JA. Elevated Sod2 activity augments matrix metalloproteinase expression: Evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res. 2003;9:424–32.

    CAS  PubMed  Google Scholar 

  33. Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, Aplin AE, Tai YT, Aguirre-Ghiso J, Flores SC, Melendez JA. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem. 2005;280(17):16916–24.

    Article  CAS  PubMed  Google Scholar 

  34. Chiarugi P, Fiaschi T. Redox signalling in anchorage-dependent cell growth. Cell Signal. 2007;19(4):672–82.

    Article  CAS  PubMed  Google Scholar 

  35. Nishikawa M. Reactive oxygen species in tumor metastasis. Cancer Lett. 2008;266(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  36. Nishikawa M, Tamada A, Hyoudou K, Umeyama Y, Takahashi Y, Kobayashi Y, Kumai H, Ishida E, Staud F, Yabe Y, Takakura Y, Yamashita F, Hashida M. Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clin Exp Metastasis. 2004;21(3):213–21.

    Article  CAS  PubMed  Google Scholar 

  37. del Bello B, Paolicchi A, Comporti M, Pompella A, Maellaro E. Hydrogen peroxide produced during gamma-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintenance of proliferation in U937 cells. FASEB J. 1999;13(1):69–79.

    PubMed  Google Scholar 

  38. Chiarugi P, Pani G, Giannoni E, Taddei L, Colavitti R, Raugei G, Symons M, Borrello S, Galeotti T, Ramponi G. Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol. 2003;161:933–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chiarugi P. Reactive oxygen species as mediators of cell adhesion. Ital J Biochem. 2003;52(1):28–32.

    CAS  PubMed  Google Scholar 

  40. Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER, Brown LF, Cohen C, Moses M, Kilroy S, Arnold RS, Lambeth JD. Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci U S A. 2002;99(2):715–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ushio-fukai M, Tang Y, Fukai T, Dikalov SI, Ma Y, Fujimoto M, Quinn MT, Pagano PJ, Johnson C, Alexander RW. Novel Role of gp91phox containing NAD(P)H oxidase in vascular endothelial factor-induced signaling and angiogenesis. Circ Res. 2014;91(12):1160–7.

    Article  Google Scholar 

  42. Yoon SO, Park SJ, Yoon SY, Yun CH, Chung AS. Sustained production of H(2)O(2) activates pro-matrix metalloproteinase- 2 through receptor tyrosine kinases/phosphatidylinositol 3-kinase/NF- kappa B pathway. J Biol Chem. 2002;277(33):30271–82.

    Article  CAS  PubMed  Google Scholar 

  43. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66(23):3663–73.

    Article  CAS  PubMed  Google Scholar 

  45. Wu W-S. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev. 2006;25(4):695–705.

    Article  CAS  PubMed  Google Scholar 

  46. Brandes N, Schmitt S, Jakob U. Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal. 2009;11(5):997–1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kwon J, Lee SR, Yang KS, Ahn Y, Kim YJ, Stadtman ER, Rhee SG. Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors. Proc Natl Acad Sci U S A. 2004;101(47):16419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J. 2003;22(20):5501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Henle ES, Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem. 1997;272(31):19095–8.

    Article  CAS  PubMed  Google Scholar 

  50. Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1988;240(4857):1302–9.

    Article  CAS  PubMed  Google Scholar 

  51. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal. 2009;11(9):2223–43.

    Article  CAS  PubMed  Google Scholar 

  53. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316–21.

    Article  CAS  PubMed  Google Scholar 

  54. Kansanen E, Kuosmanen SM, Leinonen H, Levonen AL. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem. 2011;11(2):191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weisiger RA, Fridovich I. Superoxide dismutase. Organelle specificity. J Biol Chem. 1973;248(10):3582–92.

    CAS  PubMed  Google Scholar 

  59. Tainer JA, Getzoff ED, Richardson JS, Richardson DC. Structure and mechanism of copper, zinc superoxide dismutase. Nature. 1983;306(5940):284–7.

    Article  CAS  PubMed  Google Scholar 

  60. Oh YK, Shin KS, Yuan J, Kang SJ. Superoxide dismutase 1 mutants related to amyotrophic lateral sclerosis induce endoplasmic stress in neuro2a cells. J Neurochem. 2008;104(4):993–1005.

    Article  CAS  PubMed  Google Scholar 

  61. Saccon RA, Bunton-Stasyshyn RK, Fisher EM, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? Brain. 2013;136(Pt 8):2342–58.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Joyce PI, McGoldrick P, Saccon RA, Weber W, Fratta P, West SJ, Zhu N, Carter S, Phatak V, Stewart M, Simon M, Kumar S, Heise I, Bros-Facer V, Dick J, Corrochano S, Stanford MJ, Luong TV, Nolan PM, Meyer T, Brandner S, Bennett DL, Ozdinler PH, Greensmith L, Fisher EM, Acevedo-Arozena A. A novel SOD1-ALS mutation separates central and peripheral effects of mutant SOD1 toxicity. Hum Mol Genet. 2014;24(7):1883–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049–55.

    CAS  PubMed  Google Scholar 

  64. Beck Y, Oren R, Amit B, Levanon A, Gorecki M, Hartman JR. Human Mn superoxide dismutase cDNA sequence. Nucleic Acids Res. 1987;15(21):9076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Beckman G, Lundgren E, Tarnvik A. Superoxide dismutase isozymes in different human tissues, their genetic control and intracellular localization. Hum Hered. 1973;23(4):338–45.

    Article  CAS  PubMed  Google Scholar 

  66. Barra D, Schinina ME, Simmaco M, Bannister JV, Bannister WH, Rotilio G, Bossa F. The primary structure of human liver manganese superoxide dismutase. J Biol Chem. 1984;259(20):12595–601.

    CAS  PubMed  Google Scholar 

  67. Fattman CL, Schaefer LM, Oury TD. Extracellular superoxide dismutase in biology and medicine. Free Radic Biol Med. 2003;35(3):236–56.

    Article  CAS  PubMed  Google Scholar 

  68. O’Leary BR, Fath MA, Bellizzi AM, Hrabe JE, Button AM, Allen BG, Case AJ, Altekruse SF, Wagner B, Buettner GR, Lynch CF, Hernandez BY, Cozen W, Beardsley RA, Keene J, Henry MD, Domann FE, Spitz DR, Mezhir JJ. Loss of SOD3 (EcSOD) expression promotes an aggressive phenotype in human pancreatic ductal adenocarcinoma. Clin Cancer Res. 2015;21:1741–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kim J, Mizokami A, Shin M, Izumi K, Konaka H, Kadono Y, Kitagawa Y, Keller ET, Zhang J, Namiki M. SOD3 acts as a tumor suppressor in PC-3 prostate cancer cells via hydrogen peroxide accumulation. Anticancer Res. 2014;34(6):2821–31.

    CAS  PubMed  Google Scholar 

  70. Laatikainen LE, Castellone MD, Hebrant A, Hoste C, Cantisani MC, Laurila JP, Salvatore G, Salerno P, Basolo F, Nasman J, Dumont JE, Santoro M, Laukkanen MO. Extracellular superoxide dismutase is a thyroid differentiation marker down-regulated in cancer. Endocr Relat Cancer. 2010;17(3):785–96.

    Article  CAS  PubMed  Google Scholar 

  71. Teoh-Fitzgerald ML, Fitzgerald MP, Jensen TJ, Futscher BW, Domann FE. Genetic and epigenetic inactivation of extracellular superoxide dismutase promotes an invasive phenotype in human lung cancer by disrupting ECM homeostasis. Mol Cancer Res. 2012;10(1):40–51.

    Article  CAS  PubMed  Google Scholar 

  72. Teoh ML, Fitzgerald MP, Oberley LW, Domann FE. Overexpression of extracellular superoxide dismutase attenuates heparanase expression and inhibits breast carcinoma cell growth and invasion. Cancer Res. 2009;69(15):6355–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teoh-Fitzgerald ML, Fitzgerald MP, Zhong W, Askeland RW, Domann FE. Epigenetic reprogramming governs EcSOD expression during human mammary epithelial cell differentiation, tumorigenesis and metastasis. Oncogene. 2014;33(3):358–68.

    Article  CAS  PubMed  Google Scholar 

  74. Cohen I, Pappo O, Elkin M, San T, Bar-Shavit R, Hazan R, Peretz T, Vlodavsky I, Abramovitch R. Heparanase promotes growth, angiogenesis and survival of primary breast tumors. Int J Cancer. 2006;118(7):1609–17.

    Article  CAS  PubMed  Google Scholar 

  75. Gotte M, Yip GW. Heparanase, hyaluronan, and CD44 in cancers: a breast carcinoma perspective. Cancer Res. 2006;66(21):10233–7.

    Article  PubMed  Google Scholar 

  76. Oberley TD, Oberley LW. Antioxidant enzyme levels in cancer. Histol Histopathol. 1997;12(2):525–35.

    CAS  PubMed  Google Scholar 

  77. Bravard A, Sabatier L, Hoffschir F, Ricoul M, Luccioni C, Dutrillaux B. SOD2: a new type of tumor-suppressor gene? Int J Cancer. 1992;51(3):476–80.

    Article  CAS  PubMed  Google Scholar 

  78. Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993;90(7):3113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oberley LW, Buettner GR. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979;39(4):1141–9.

    CAS  PubMed  Google Scholar 

  80. Huang Y, He T, Domann FE. Decreased expression of manganese superoxide dismutase in transformed cells is associated with increased cytosine methylation of the SOD2 gene. DNA Cell Biol. 1999;18(8):643–52.

    Article  CAS  PubMed  Google Scholar 

  81. Meng X, Wu J, Pan C, Wang H, Ying X, Zhou Y, Yu H, Zuo Y, Pan Z, Liu RY, Huang W. Genetic and epigenetic down-regulation of microRNA-212 promotes colorectal tumor metastasis via dysregulation of MnSOD. Gastroenterology. 2013;145(2):426–36.e1–6.

    Article  CAS  PubMed  Google Scholar 

  82. Cyr AR, Hitchler MJ, Domann FE. Regulation of SOD2 in cancer by histone modifications and CpG methylation: closing the loop between redox biology and epigenetics. Antioxid Redox Signal. 2013;18(15):1946–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Behrend L, Mohr A, Dick T, Zwacka RM. Manganese superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol Cell Biol. 2005;25(17):7758–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Plymate SR, Haugk KH, Sprenger CC, Nelson PS, Tennant MK, Zhang Y, Oberley LW, Zhong W, Drivdahl R, Oberley TD. Increased manganese superoxide dismutase (SOD-2) is part of the mechanism for prostate tumor suppression by Mac25/insulin-like growth factor binding-protein-related protein-1. Oncogene. 2003;22(7):1024–34.

    Article  CAS  PubMed  Google Scholar 

  85. Li JJ, Colburn NH, Oberley LW. Maspin gene expression in tumor suppression induced by overexpressing manganese-containing superoxide dismutase cDNA in human breast cancer cells. Carcinogenesis. 1998;19(5):833–9.

    Article  CAS  PubMed  Google Scholar 

  86. Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer. Front Oncol. 2013;3:292.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Xu Y, Miriyala S, Fang F, Bakthavatchalu V, Noel T, Schell DM, Wang C, St Clair WH, St Clair DK. Manganese superoxide dismutase deficiency triggers mitochondrial uncoupling and the Warburg effect. Oncogene. 2014;34(32):4229–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Elchuri S, Oberley TD, Qi W, Eisenstein RS, Jackson Roberts L, Van Remmen H, Epstein CJ, Huang TT. CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life. Oncogene. 2005;24(3):367–80.

    Article  CAS  PubMed  Google Scholar 

  89. Busuttil RA, Garcia AM, Cabrera C, Rodriguez A, Suh Y, Kim WH, Huang TT, Vijg J. Organ-specific increase in mutation accumulation and apoptosis rate in CuZn-superoxide dismutase-deficient mice. Cancer Res. 2005;65(24):11271–5.

    Article  CAS  PubMed  Google Scholar 

  90. Zhang Y, Zhao W, Zhang HJ, Domann FE, Oberley LW. Overexpression of copper zinc superoxide dismutase suppresses human glioma cell growth. Cancer Res. 2002;62(4):1205–12.

    CAS  PubMed  Google Scholar 

  91. Menon SG, Goswami PC. A redox cycle within the cell cycle: ring in the old with the new. Oncogene. 2007;26(8):1101–9.

    Article  CAS  PubMed  Google Scholar 

  92. Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal. 2009;11(12):2985–3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sarsour EH, Kalen AL, Goswami PC. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxid Redox Signal. 2014;20(10):1618–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Oberley LW, Oberley TD, Buettner GR. Cell differentiation, aging and cancer: the possible roles of superoxide and superoxide dismutases. Med Hypotheses. 1980;6(3):249–68.

    Article  CAS  PubMed  Google Scholar 

  95. Oberley LW, Oberley TD, Buettner GR. Cell division in normal and transformed cells: the possible role of superoxide and hydrogen peroxide. Med Hypotheses. 1981;7(1):21–42.

    Article  CAS  PubMed  Google Scholar 

  96. Miar A, Hevia D, Munoz-Cimadevilla H, Astudillo A, Velasco J, Sainz RM, Mayo JC. Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer. Free Radic Biol Med. 2015;85:45–55.

    Article  CAS  PubMed  Google Scholar 

  97. Miao L, St Clair DK. Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med. 2009;47(4):344–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rojo AI, Salinas M, Martin D, Perona R, Cuadrado A. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci. 2004;24(33):7324–34.

    Article  CAS  PubMed  Google Scholar 

  99. Sompol P, Xu Y, Ittarat W, Daosukho C, St Clair D. NF-kappaB-associated MnSOD induction protects against beta-amyloid-induced neuronal apoptosis. J Mol Neurosci. 2006;29(3):279–88.

    Article  CAS  PubMed  Google Scholar 

  100. Delhalle S, Deregowski V, Benoit V, Merville MP, Bours V. NF-kappaB-dependent MnSOD expression protects adenocarcinoma cells from TNF-alpha-induced apoptosis. Oncogene. 2002;21(24):3917–24.

    Article  CAS  PubMed  Google Scholar 

  101. Park EY, Rho HM. The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element. Mol Cell Biochem. 2002;240(1–2):47–55.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Y, Martin SG. Redox proteins and radiotherapy. Clin Oncol (R Coll Radiol). 2014;26(5):289–300.

    Article  CAS  Google Scholar 

  103. Holley AK, Xu Y, St Clair DK, St Clair WH. RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells. Ann N Y Acad Sci. 2010;1201:129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hour TC, Lai YL, Kuan CI, Chou CK, Wang JM, Tu HY, Hu HT, Lin CS, Wu WJ, Pu YS, Sterneck E, Huang AM. Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells. Biochem Pharmacol. 2010;80(3):325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chen PM, Cheng YW, Wu TC, Chen CY, Lee H. MnSOD overexpression confers cisplatin resistance in lung adenocarcinoma via the NF-kappaB/Snail/Bcl-2 pathway. Free Radic Biol Med. 2015;79:127–37.

    Article  CAS  PubMed  Google Scholar 

  106. Kamarajugadda S, Cai Q, Chen H, Nayak S, Zhu J, He M, Jin Y, Zhang Y, Ai L, Martin SS, Tan M, Lu J. Manganese superoxide dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis. 2013;4:e504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hermann B, Li Y, Ray MB, Wo JM, Martin 2nd RC. Association of manganese superoxide dismutase expression with progression of carcinogenesis in Barrett esophagus. Arch Surg. 2005;140(12):1204–9; discussion 9.

    Article  CAS  PubMed  Google Scholar 

  108. Janssen AM, Bosman CB, Kruidenier L, Griffioen G, Lamers CB, van Krieken JH, van de Velde CJ, Verspaget HW. Superoxide dismutases in the human colorectal cancer sequence. J Cancer Res Clin Oncol. 1999;125(6):327–35.

    Article  CAS  PubMed  Google Scholar 

  109. Malafa M, Margenthaler J, Webb B, Neitzel L, Christophersen M. MnSOD expression is increased in metastatic gastric cancer. J Surg Res. 2000;88(2):130–4.

    Article  CAS  PubMed  Google Scholar 

  110. Nonaka Y, Iwagaki H, Kimura T, Fuchimoto S, Orita K. Effect of reactive oxygen intermediates on the in vitro invasive capacity of tumor cells and liver metastasis in mice. Int J Cancer. 1993;54(6):983–6.

    Article  CAS  PubMed  Google Scholar 

  111. Bur H, Haapasaari KM, Turpeenniemi-Hujanen T, Kuittinen O, Auvinen P, Marin K, Koivunen P, Sormunen R, Soini Y, Karihtala P. Oxidative stress markers and mitochondrial antioxidant enzyme expression are increased in aggressive Hodgkin lymphomas. Histopathology. 2014;65(3):319–27.

    Article  PubMed  Google Scholar 

  112. Liu Z, Li S, Cai Y, Wang A, He Q, Zheng C, Zhao T, Ding X, Zhou X. Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radic Biol Med. 2012;53(1):44–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Dhar SK, Tangpong J, Chaiswing L, Oberley TD, St Clair DK. Manganese superoxide dismutase is a p53-regulated gene that switches cancers between early and advanced stages. Cancer Res. 2011;71(21):6684–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liochev SI, Fridovich I. The effects of superoxide dismutase on H2O2 formation. Free Radic Biol Med. 2007;42(10):1465–9.

    Article  CAS  PubMed  Google Scholar 

  115. Fridovich I. Superoxide dismutases: anti- versus pro- oxidants? Anticancer Agents Med Chem. 2011;11(2):175–7.

    Article  CAS  PubMed  Google Scholar 

  116. Buettner GR. Superoxide dismutase in redox biology: the roles of superoxide and hydrogen peroxide. Anticancer Agents Med Chem. 2011;11(4):341–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Buettner GR, Ng CF, Wang M, Rodgers VG, Schafer FQ. A new paradigm: manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state. Free Radic Biol Med. 2006;41(8):1338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dasgupta J, Subbaram S, Connor KM, Rodriguez AM, Tirosh O, Beckman JS, Jourd’Heuil D, Melendez JA. Manganese superoxide dismutase protects from TNF-alpha-induced apoptosis by increasing the steady-state production of H2O2. Antioxid Redox Signal. 2006;8(7–8):1295–305.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang HJ, Zhao W, Venkataraman S, Robbins ME, Buettner GR, Kregel KC, Oberley LW. Activation of matrix metalloproteinase-2 by overexpression of manganese superoxide dismutase in human breast cancer MCF-7 cells involves reactive oxygen species. J Biol Chem. 2002;277(23):20919–26.

    Article  CAS  PubMed  Google Scholar 

  120. Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE, Tonks NK, Mazar AP, Donate F. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci U S A. 2008;105(20):7147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buerk DG, Lamkin-Kennard K, Jaron D. Modeling the influence of superoxide dismutase on superoxide and nitric oxide interactions, including reversible inhibition of oxygen consumption. Free Radic Biol Med. 2003;34(11):1488–503.

    Article  CAS  PubMed  Google Scholar 

  122. Song Y, Buettner GR. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic Biol Med. 2010;49(6):919–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu J, Zhan X, Li M, Li G, Zhang P, Xiao Z, Shao M, Peng F, Hu R, Chen Z. Mitochondrial proteomics of nasopharyngeal carcinoma metastasis. BMC Med Genomics. 2012;5(1):62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ranganathan AC, Nelson KK, Rodriguez AM, Kim KH, Tower GB, Rutter JL, Brinckerhoff CE, Huang TT, Epstein CJ, Jeffrey JJ, Melendez JA. Manganese superoxide dismutase signals matrix metalloproteinase expression via H2O2-dependent ERK1/2 activation. J Biol Chem. 2001;276(17):14264–70.

    CAS  PubMed  Google Scholar 

  125. Hurd TR, DeGennaro M, Lehmann R. Redox regulation of cell migration and adhesion. Trends Cell Biol. 2012;22(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  126. Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, Giordano S, Pani G, Galeotti T. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene. 2006;25(26):3689–98.

    Article  CAS  PubMed  Google Scholar 

  127. Juarez JC, Betancourt Jr O, Pirie-Shepherd SR, Guan X, Price ML, Shaw DE, Mazar AP, Donate F. Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1. Clin Cancer Res. 2006;12(16):4974–82.

    Article  CAS  PubMed  Google Scholar 

  128. Kumar P, Yadav A, Patel SN, Islam M, Pan Q, Merajver SD, Teknos TN. Tetrathiomolybdate inhibits head and neck cancer metastasis by decreasing tumor cell motility, invasiveness and by promoting tumor cell anoikis. Mol Cancer. 2010;9:206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Giannoni E, Buricchi F, Grimaldi G, Parri M, Cialdai F, Taddei ML, Raugei G, Ramponi G, Chiarugi P. Redox regulation of anoikis: reactive oxygen species as essential mediators of cell survival. Cell Death Differ. 2008;15(5):867–78.

    Article  CAS  PubMed  Google Scholar 

  130. Hempel N, Melendez JA. Intracellular redox status controls membrane localization of pro- and anti-migratory signaling molecules. Redox Biol. 2014;2:245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu Z, He Q, Ding X, Zhao T, Zhao L, Wang A. SOD2 is a C-myc target gene that promotes the migration and invasion of tongue squamous cell carcinoma involving cancer stem-like cells. Int J Biochem Cell Biol. 2015;60:139–46.

    Article  CAS  PubMed  Google Scholar 

  132. Hart PC, Mao M, de Abreu AL, Ansenberger-Fricano K, Ekoue DN, Ganini D, Kajdacsy-Balla A, Diamond AM, Minshall RD, Consolaro ME, Santos JH, Bonini MG. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat Commun. 2015;6:6053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cabelli DE, Allen D, Bielski BH, Holcman J. The interaction between Cu(I) superoxide dismutase and hydrogen peroxide. J Biol Chem. 1989;264(17):9967–71.

    CAS  PubMed  Google Scholar 

  134. Viglino P, Scarpa M, Rotilio G, Rigo A. A kinetic study of the reactions between H2O2 and Cu, Zn superoxide dismutase; evidence for an electrostatic control of the reaction rate. Biochim Biophys Acta. 1988;952(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  135. Hink HU, Santanam N, Dikalov S, McCann L, Nguyen AD, Parthasarathy S, Harrison DG, Fukai T. Peroxidase properties of extracellular superoxide dismutase: role of uric acid in modulating in vivo activity. Arterioscler Thromb Vasc Biol. 2002;22(9):1402–8.

    Article  CAS  PubMed  Google Scholar 

  136. Yim MB, Chock PB, Stadtman ER. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide. Proc Natl Acad Sci U S A. 1990;87(13):5006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yim MB, Berlett BS, Chock PB, Stadtman ER. Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: detection of free radical intermediates. Proc Natl Acad Sci U S A. 1990;87(1):394–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yim MB, Chock PB, Stadtman ER. Enzyme function of copper, zinc superoxide dismutase as a free radical generator. J Biol Chem. 1993;268(6):4099–105.

    CAS  PubMed  Google Scholar 

  139. Sankarapandi S, Zweier JL. Evidence against the generation of free hydroxyl radicals from the interaction of copper, zinc-superoxide dismutase and hydrogen peroxide. J Biol Chem. 1999;274(49):34576–83.

    Article  CAS  PubMed  Google Scholar 

  140. Stadtman ER, Berlett BS, Chock PB. Manganese-dependent disproportionation of hydrogen peroxide in bicarbonate buffer. Proc Natl Acad Sci U S A. 1990;87(1):384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ansenberger-Fricano K, Ganini D, Mao M, Chatterjee S, Dallas S, Mason RP, Stadler K, Santos JH, Bonini MG. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic Biol Med. 2013;54:116–24.

    Article  CAS  PubMed  Google Scholar 

  142. Kirkman HN, Gaetani GF. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A. 1984;81(July):4343–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 1979;59(3):527–605.

    CAS  PubMed  Google Scholar 

  144. Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ. Extension of life-span with superoxide dismutase/catalase mimetics. Science. 2000;289(5484):1567–9.

    Article  CAS  PubMed  Google Scholar 

  145. Orr W, Sohal R. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263(5150):1128–30.

    Article  CAS  PubMed  Google Scholar 

  146. Schriner SE, Linford NJ. Extension of mouse lifespan by overexpression of catalase. Age. 2006;28(December 2005):209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bauer G. Tumor cell-protective catalase as a novel target for rational therapeutic approaches based on specific intercellular ROS signaling. Anticancer Res. 2012;32(7):2599–624.

    CAS  PubMed  Google Scholar 

  148. Heinzelmann S, Bauer G. Multiple protective functions of catalase against intercellular apoptosis-inducing ROS signaling of human tumor cells. Biol Chem. 2010;391(6):675–93.

    Article  CAS  PubMed  Google Scholar 

  149. Bauer G, Zarkovic N. Revealing mechanisms of selective, concentration-dependent potentials of 4-hydroxy-2-nonenal to induce apoptosis in cancer cells through inactivation of membrane-associated catalase. Free Radic Biol Med. 2015;81:128–44.

    Article  CAS  PubMed  Google Scholar 

  150. Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M. Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A. 2006;103(13):4952–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC. Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res. 2001;61(23):8578–85.

    CAS  PubMed  Google Scholar 

  152. Cobanoglu U, Demir H, Duran M, Şehitogullari A, Mergan D, Demir C. Erythrocyte catalase and carbonic anhydrase activities in lung cancer. Asian Pac J Cancer Prev. 2010;11:1377–82.

    PubMed  Google Scholar 

  153. Jiang B, Xiao S, Khan MA, Xue M. Defective antioxidant systems in cervical cancer. Tumour Biol. 2013;34(4):2003–9.

    Article  CAS  PubMed  Google Scholar 

  154. Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology. 2008;135(6):2128–40.e8.

    Article  CAS  PubMed  Google Scholar 

  155. Radenkovic S, Milosevic Z, Konjevic G, Karadzic K, Rovcanin B, Buta M, Gopcevic K, Jurisic V. Lactate dehydrogenase, catalase, and superoxide dismutase in tumor tissue of breast cancer patients in respect to mammographic findings. Cell Biochem Biophys. 2013;66(2):287–95.

    Article  CAS  PubMed  Google Scholar 

  156. M-y C, Cheong JY, Lim W, Jo S, Lee Y, Wang H-j, K-h H, Cho H. Prognostic significance of catalase expression and its regulatory effects on hepatitis B virus X protein (HBx) in HBV-related advanced hepatocellular carcinomas. Oncotarget. 2014;5(23):12233–46.

    Article  Google Scholar 

  157. Woolston CM, Zhang L, Storr SJ, Al-Attar A, Shehata M, Ellis IO, Chan SY, Martin SG. The prognostic and predictive power of redox protein expression for anthracycline-based chemotherapy response in locally advanced breast cancer. Mod Pathol. 2012;25(8):1106–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Sotgia F, Martinez-Outschoorn UE, Lisanti MP. Mitochondrial oxidative stress drives tumor progression and metastasis: should we use antioxidants as a key component of cancer treatment and prevention? BMC Med. 2011;9(1):62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J. Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol. 2011;82(10):1384–90.

    Article  CAS  PubMed  Google Scholar 

  160. Sato K, Ito K, Kohara H, Yamaguchi Y, Adachi K, Endo H. Negative regulation of catalase gene expression in hepatoma cells. Mol Cell Biol. 1992;12(6):2525–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Kwei KA, Finch JS, Thompson EJ, Bowden GT. Transcriptional repression of catalase in mouse skin tumor progression. Neoplasia. 2004;6(5):440–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  162. Salcher S, Hagenbuchner J, Geiger K, Seiter MA, Rainer J, Kofler R, Hermann M, Kiechl-Kohlendorfer U, Ausserlechner MJ, Obexer P. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma. Mol Cancer. 2014;13:224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin JB, Bertrand L, Verrax J, Calderon PB. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol. 2014;89(2):217–23.

    Article  CAS  PubMed  Google Scholar 

  164. Min JY, Lim SO, Jung G. Downregulation of catalase by reactive oxygen species via hypermethylation of CpG island II on the catalase promoter. FEBS Lett. 2010;584(11):2427–32.

    Article  CAS  PubMed  Google Scholar 

  165. Sun Y, Colburn NH, Oberley LW. Depression of catalase gene expression after immortalization and transformation of mouse liver cells. Carcinogenesis. 1993;14(8):1505–10.

    Article  CAS  PubMed  Google Scholar 

  166. Quan X, Lim SO, Jung G. Reactive oxygen species downregulate catalase expression via methylation of a CpG Island in the Oct-1 promoter. FEBS Lett. 2011;585(21):3436–41.

    Article  CAS  PubMed  Google Scholar 

  167. Lee T-B, Moon Y-S, Choi C-H. Histone H4 deacetylation down-regulates catalase gene expression in doxorubicin-resistant AML subline. Cell Biol Toxicol. 2012;28(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  168. Pennington JD, Wang TJC, Nguyen P, Sun L, Bisht K, Smart D, Gius D. Redox-sensitive signaling factors as a novel molecular targets for cancer therapy. Drug Resist Updat. 2005;8:322–30.

    Article  CAS  PubMed  Google Scholar 

  169. Nishikawa M, Hashida M, Takakura Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv Drug Deliv Rev. 2009;61(4):319–26.

    Article  CAS  PubMed  Google Scholar 

  170. Lim HW, Hong S, Jin W, Lim S, Kim SJ, Kang HJ, Park EH, Ahn K, Lim CJ. Up-regulation of defense enzymes is responsible for low reactive oxygen species in malignant prostate cancer cells. Exp Mol Med. 2005;37(5):497–506.

    Article  CAS  PubMed  Google Scholar 

  171. Ca D, Durbin SM, Thau MR, Zellmer VR, Chapman SE, Diener J, Wathen C, Leevy WM, Schafer ZT. Antioxidant enzymes mediate survival of breast cancer cells deprived of extracellular matrix. Cancer Res. 2013;73(12):3704–15.

    Article  CAS  Google Scholar 

  172. Obrador E, Valles SL, Benlloch M, Sirerol JA, Pellicer JA, Alcácer J, Coronado JA, Estrela JM. Glucocorticoid receptor knockdown decreases the antioxidant protection of B16 melanoma cells: an endocrine system-related mechanism that compromises metastatic cell resistance to vascular endothelium-induced tumor cytotoxicity. PLoS One. 2014;9(5), e96466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Brigelius-Flohé R. Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med. 1999;27(99):951–65.

    Article  PubMed  Google Scholar 

  174. Brigelius-Flohe R, Maiorino M. Glutathione peroxidases. Biochim Biophys Acta. 2013;1830(5):3289–303.

    Article  CAS  PubMed  Google Scholar 

  175. Fang W, Goldberg ML, Pohl NM, Bi X, Tong C, Xiong B, Koh TJ, Diamond AM, Yang W. Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein. Carcinogenesis. 2010;31(8):1360–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huang C, Ding G, Gu C, Zhou J, Kuang M, Ji Y, He Y, Kondo T, Fan J. Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1alpha to promote hepatocellular carcinoma invasiveness. Clin Cancer Res. 2012;18(11):3042–53.

    Article  CAS  PubMed  Google Scholar 

  177. Jardim BV, Moschetta MG, Leonel C, Gelaleti GB, Regiani VR, Ferreira LC, Lopes JR, Zuccari DA. Glutathione and glutathione peroxidase expression in breast cancer: an immunohistochemical and molecular study. Oncol Rep. 2013;30(3):1119–28.

    PubMed  Google Scholar 

  178. Gan X, Chen B, Shen Z, Liu Y, Li H, Xie X, Xu X, Li H, Huang Z, Chen J. High GPX1 expression promotes esophageal squamous cell carcinoma invasion, migration, proliferation and cisplatin-resistance but can be reduced by vitamin D. Int J Clin Exp Med. 2014;7(9):2530–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Han JJ, Xie DR, Wang LL, Liu YQ, Wu GF, Sun Q, Chen YX, Wei Y, Huang ZQ, Li HG. Significance of glutathione peroxidase 1 and caudal-related homeodomain transcription factor in human gastric adenocarcinoma. Gastroenterol Res Pract. 2013;2013:380193.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Min SY, Kim HS, Jung EJ, Jung EJ, Jee CD, Kim WH. Prognostic significance of glutathione peroxidase 1 (GPX1) down-regulation and correlation with aberrant promoter methylation in human gastric cancer. Anticancer Res. 2012;32(8):3169–75.

    CAS  PubMed  Google Scholar 

  181. Yan W, Chen X. GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem. 2006;281:7856–62.

    Article  CAS  PubMed  Google Scholar 

  182. Naiki T, Naiki-Ito A, Asamoto M, Kawai N, Tozawa K, Etani T, Sato S, Suzuki S, Shirai T, Kohri K, Takahashi S. GPX2 overexpression is involved in cell proliferation and prognosis of castration-resistant prostate cancer. Carcinogenesis. 2014;35(9):1962–7.

    Article  CAS  PubMed  Google Scholar 

  183. Ouyang X, Deweese TL, Nelson WG, Abate-shen C. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Cancer Res. 2005;65(23):6773–9.

    Article  CAS  PubMed  Google Scholar 

  184. Yang Z-l, Yang L, Zou Q, Yuan Y, Li J, Liang L, Zeng G, Chen S. Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis Markers. 2013;35(3):163–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Lee O-J, Schneider-Stock R, McChesney PA, Kuester D, Roessner A, Vieth M, Moskaluk CA, El-Rifai WE. Hypermethylation, loss of expression of glutathione peroxidase-3 in Barrett's tumorigenesis. Neoplasia. 2005;7(9):854–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Yu YP, Yu G, Tseng G, Cieply K, Nelson J, Defrances M, Zarnegar R, Michalopoulos G, Luo J-H. Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis. Cancer Res. 2007;67(17):8043–50.

    Article  CAS  PubMed  Google Scholar 

  187. Mohamed MM, Sabet S, Peng D-F, Nouh MA, El-Shinawi M, El-Rifai W. Promoter hypermethylation and suppression of glutathione peroxidase 3 are associated with inflammatory breast carcinogenesis. Oxid Med Cell Longev. 2014;2014:787195.

    PubMed  PubMed Central  Google Scholar 

  188. Zhang X, Yang JJ, Kim YSYSUN, Kim K-Y, Ahn WS, Yang S. An 8-gene signature, including methylated and down-regulated glutathione peroxidase 3, of gastric cancer. Int J Oncol. 2010;36(2):405–14.

    CAS  PubMed  Google Scholar 

  189. Peng D, Razvi M, Chen H, Washington K, Roessner A, El-Rifai W. DNA hypermethylation regulates the expression of members of the Mu-class glutathione-S-transferases and glutathione peroxidases in Barrett’s adenocarcinoma. Gut. 2010;58(1):5–15.

    Article  Google Scholar 

  190. Falck E, Karlsson S, Carlsson J, Helenius G, Karlsson M, Klinga-Levan K. Loss of glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma. Cancer Cell Int. 2010;10(1):46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Lin J-C, Kuo W-R, Chiang F-Y, Hsiao P-J, Lee K-W, Wu C-W, Juo S-HH. Glutathione peroxidase 3 gene polymorphisms and risk of differentiated thyroid cancer. Surgery. 2009;145(5):508–13.

    Article  PubMed  Google Scholar 

  192. Wenk J, Schüller J, Hinrichs C, Syrovets T, Azoitei N, Podda M, Wlaschek M, Brenneisen P, Schneider L, Sabiwalsky A, Peters T, Sulyok S, Dissemond J, Schauen M, Krieg T, Wirth T, Simmet T, Scharffetter-Kochanek K. Overexpression of phospholipid-hydroperoxide glutathione peroxidase in human dermal fibroblasts abrogates UVA irradiation-induced expression of interstitial collagenase/matrix metalloproteinase-1 by suppression of phosphatidylcholine hydroperoxide-mediate. J Biol Chem. 2004;279(44):45634–42.

    Article  CAS  PubMed  Google Scholar 

  193. Bermano G, Pagmantidis V, Holloway N, Kadri S, Mowat NA, Shiel RS, Arthur JR, Mathers JC, Daly AK, Broom J, Hesketh JE. Evidence that a polymorphism within the 3′UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr. 2007;2:225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ke HL, Lin J, Ye Y, Wu WJ, Lin HH, Wei H, Huang M, Chang DW, Dinney CP, Wu X. Genetic variations in glutathione pathway genes predict cancer recurrence in patients treated with Transurethral resection and bacillus Calmette-Guerin instillation for non-muscle invasive bladder cancer. Ann Surg Oncol. 2015;22(12):4104–10.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins—from superoxide dismutation to HO-driven pathways. Redox Biol. 2015;5:43–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Tovmasyan A, Maia CG, Weitner T, Carballal S, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Radi R, Reboucas JS, Spasojevic I, Benov L, Batinic-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med. 2015;86:308–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Hempel Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hemachandra, L.P.M.P., Chandrasekaran, A., Melendez, J.A., Hempel, N. (2016). Regulation of the Cellular Redox Environment by Superoxide Dismutases, Catalase, and Glutathione Peroxidases During Tumor Metastasis. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_4

Download citation

Publish with us

Policies and ethics