Skip to main content

Using Metalloporphyrins to Preserve β Cell Mass and Inhibit Immune Responses in Diabetes

  • Chapter
  • First Online:
  • 866 Accesses

Abstract

As of 2012, 29.1 million Americans are living with diabetes [1], creating a significant healthcare concern for the United States. Diabetes is a disease highly driven by inflammation and reactive oxygen species (ROS). Therefore, agents that affect secondary inflammation as a result of oxidative stress like metalloporphyrins are a desirable approach to alleviate the inflammation associated with disease. Here, we will discuss the role ROS play in the immunopathology of diabetes, the work that has elucidated the efficacy of metalloporphyrins in the disease, and their future utility in the clinic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Prevention, C.f.D.C.a., National Diabetes Statistics Report: estimates of diabetes and its burden in the United States, 2014., U.D.o.H.a.H. Services, Editor. 2014: Atlanta.

    Google Scholar 

  2. Federation ID. Complication of diabetes. 2015. http://www.idf.org/complications-diabetes.

  3. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Knip M, Simell O. Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(7):a007690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Achenbach P, et al. Natural history of type 1 diabetes. Diabetes. 2005;54 Suppl 2:S25–31.

    Article  CAS  PubMed  Google Scholar 

  6. Delmastro MM, Piganelli JD. Oxidative stress and redox modulation potential in type 1 diabetes. Clin Dev Immunol. 2011;2011:593863.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bodin J, Stene LC, Nygaard UC. Can exposure to environmental chemicals increase the risk of diabetes Type 1 development? BioMed Res Int. 2015;2015:19.

    Article  CAS  Google Scholar 

  8. Willcox A, et al. Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol. 2009;155(2):173–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Foulis AK, Stewart JA. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia. 1984;26(6):456–61.

    Article  CAS  PubMed  Google Scholar 

  10. Atkinson MA, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med. 1999;5(6):601–4.

    Article  CAS  PubMed  Google Scholar 

  11. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  12. Butler AE, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  13. Lutz TA, Woods SC. Overview of animal models of obesity. Curr Protoc Pharmacol. 2012;Chapter 5:Unit5 61.

    PubMed  Google Scholar 

  14. Haskins K, et al. Oxidative stress in type 1 diabetes. Ann N Y Acad Sci. 2003;1005:43–54.

    Article  CAS  PubMed  Google Scholar 

  15. Rabinovitch A. Free radicals as mediators of pancreatic islet beta-cell injury in autoimmune diabetes. J Lab Clin Med. 1992;119(5):455–6.

    CAS  PubMed  Google Scholar 

  16. Nakayama M, et al. Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem Biophys Res Commun. 2005;332(4):927–33.

    Article  CAS  PubMed  Google Scholar 

  17. Lenzen S. Oxidative stress: the vulnerable beta-cell. Biochem Soc Trans. 2008;36(Pt 3):343–7.

    Article  CAS  PubMed  Google Scholar 

  18. Batinic-Haberle I, et al. New class of potent catalysts of O2-dismutation. Mn(III) ortho-methoxyethylpyridyl- and di-ortho-methoxyethylimidazolylporphyrins. Dalton Trans. 2004;11:1696–702.

    Article  Google Scholar 

  19. Batinic-Haberle I, et al. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20(15):2372–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins - From superoxide dismutation to HO-driven pathways. Redox Biol. 2015;5:43–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Batinic-Haberle I, et al. Design of Mn porphyrins for treating oxidative stress injuries and their redox-based regulation of cellular transcriptional activities. Amino Acids. 2012;42(1):95–113.

    Article  CAS  PubMed  Google Scholar 

  22. Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal. 2013;20(15):2465–77.

    Article  PubMed  CAS  Google Scholar 

  23. Antico Arciuch VG, et al. Mitochondrial regulation of cell cycle and proliferation. Antioxid Redox Signal. 2012;16(10):1150–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morgan D, et al. Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology. 2009;150(5):2197–201.

    Article  CAS  PubMed  Google Scholar 

  25. Newsholme P, et al. Insights into the critical role of NADPH oxidase(s) in the normal and dysregulated pancreatic beta cell. Diabetologia. 2009;52(12):2489–98.

    Article  CAS  PubMed  Google Scholar 

  26. Pi J, et al. Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes. 2007;56(7):1783–91.

    Article  CAS  PubMed  Google Scholar 

  27. Robertson RP, Harmon JS. Diabetes, glucose toxicity, and oxidative stress: A case of double jeopardy for the pancreatic islet beta cell. Free Radic Biol Med. 2006;41(2):177–84.

    Article  CAS  PubMed  Google Scholar 

  28. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20(3):463–6.

    Article  CAS  PubMed  Google Scholar 

  29. Modak MA, Parab PB, Ghaskadbi SS. Pancreatic islets are very poor in rectifying oxidative DNA damage. Pancreas. 2009;38(1):23–9.

    Article  CAS  PubMed  Google Scholar 

  30. Fridlyand LE, Philipson LH. Does the glucose-dependent insulin secretion mechanism itself cause oxidative stress in pancreatic beta-cells? Diabetes. 2004;53(8):1942–8.

    Article  CAS  PubMed  Google Scholar 

  31. Azevedo-Martins AK, et al. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes. 2003;52(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  32. Gurgul E, et al. Mitochondrial catalase overexpression protects insulin-producing cells against toxicity of reactive oxygen species and proinflammatory cytokines. Diabetes. 2004;53(9):2271–80.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor-Fishwick DA. NOX, NOX who is there? The contribution of NADPH oxidase one to beta cell dysfunction. Front Endocrinol (Lausanne). 2013;4:40.

    Google Scholar 

  34. Oliveira HR, et al. Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes. 2003;52(6):1457–63.

    Article  CAS  PubMed  Google Scholar 

  35. Uchizono Y, et al. Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci. 2006;80(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  36. Drummond GR, et al. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011;10(6):453–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weaver JR, Taylor-Fishwick DA. Regulation of NOX-1 expression in beta cells: a positive feedback loop involving the Src-kinase signaling pathway. Mol Cell Endocrinol. 2013;369(1-2):35–41.

    Article  CAS  PubMed  Google Scholar 

  38. Morgan D, et al. Glucose, palmitate and pro-inflammatory cytokines modulate production and activity of a phagocyte-like NADPH oxidase in rat pancreatic islets and a clonal beta cell line. Diabetologia. 2007;50(2):359–69.

    Article  CAS  PubMed  Google Scholar 

  39. Thayer TC, et al. Superoxide production by macrophages and T cells is critical for the induction of autoreactivity and type 1 diabetes. Diabetes. 2011;60(8):2144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tse HM, et al. NADPH oxidase deficiency regulates Th lineage commitment and modulates autoimmunity. J Immunol. 2010;185(9):5247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weaver JR, Grzesik W, Taylor-Fishwick DA. Inhibition of NADPH oxidase-1 preserves beta cell function. Diabetologia. 2015;58(1):113–21.

    Article  CAS  PubMed  Google Scholar 

  42. West IC. Radicals and oxidative stress in diabetes. Diabet Med. 2000;17(3):171–80.

    Article  CAS  PubMed  Google Scholar 

  43. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gardner PR. Superoxide-driven aconitase FE-S center cycling. Biosci Rep. 1997;17(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  45. Raza H, et al. Impaired mitochondrial respiratory functions and oxidative stress in streptozotocin-induced diabetic rats. Int J Mol Sci. 2011;12(5):3133–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delmastro-Greenwood MM, et al. Mn porphyrin regulation of aerobic glycolysis: implications on the activation of diabetogenic immune cells. Antioxid Redox Signal. 2013;19(16):1902–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosenberg L, et al. Structural and functional changes resulting from islet isolation lead to islet cell death. Surgery. 1999;126(2):393–8.

    Article  CAS  PubMed  Google Scholar 

  48. Bottino R, et al. Preservation of human islet cell functional mass by anti-oxidative action of a novel SOD mimic compound. Diabetes. 2002;51(8):2561–7.

    Article  CAS  PubMed  Google Scholar 

  49. Sklavos MM, et al. Redox modulation protects islets from transplant-related injury. Diabetes. 2010;59(7):1731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bottino R, et al. Response of human islets to isolation stress and the effect of antioxidant treatment. Diabetes. 2004;53(10):2559–68.

    Article  CAS  PubMed  Google Scholar 

  51. Kolb-Bachofen V, Kolb H. A role for macrophages in the pathogenesis of type 1 diabetes. Autoimmunity. 1989;3(2):145–54.

    Article  CAS  PubMed  Google Scholar 

  52. O’Reilly LA, et al. Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression. Eur J Immunol. 1991;21(5):1171–80.

    Article  PubMed  Google Scholar 

  53. Chen MC, et al. Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1 beta-exposed human and rat islet cells. Diabetologia. 2001;44(3):325–32.

    Article  CAS  PubMed  Google Scholar 

  54. Dahlen E, et al. Dendritic cells and macrophages are the first and major producers of TNF-alpha in pancreatic islets in the nonobese diabetic mouse. J Immunol. 1998;160(7):3585–93.

    CAS  PubMed  Google Scholar 

  55. Arnush M, et al. IL-1 produced and released endogenously within human islets inhibits beta cell function. J Clin Invest. 1998;102(3):516–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Calderon B, Suri A, Unanue ER. In CD4+ T-cell-induced diabetes, macrophages are the final effector cells that mediate islet beta-cell killing: studies from an acute model. Am J Pathol. 2006;169(6):2137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Burkart V, Kolb H. Macrophages in islet destruction in autoimmune diabetes mellitus. Immunobiology. 1996;195(4-5):601–13.

    Article  CAS  PubMed  Google Scholar 

  58. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63(1):218–42.

    Article  CAS  PubMed  Google Scholar 

  59. Vignais PV. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci. 2002;59(9):1428–59.

    Article  CAS  PubMed  Google Scholar 

  60. Tse HM, et al. Disruption of innate-mediated proinflammatory cytokine and reactive oxygen species third signal leads to antigen-specific hyporesponsiveness. J Immunol. 2007;178(2):908–17.

    Article  CAS  PubMed  Google Scholar 

  61. Seleme MC, et al. Dysregulated TLR3-dependent signaling and innate immune activation in superoxide-deficient macrophages from nonobese diabetic mice. Free Radic Biol Med. 2012;52(9):2047–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Padgett LE, et al. Loss of NADPH oxidase-derived superoxide skews macrophage phenotypes to delay type 1 diabetes. Diabetes. 2015;64(3):937–46.

    Article  CAS  PubMed  Google Scholar 

  63. Cantor J, Haskins K. Recruitment and activation of macrophages by pathogenic CD4 T cells in type 1 diabetes: evidence for involvement of CCR8 and CCL1. J Immunol. 2007;179(9):5760–7.

    Article  CAS  PubMed  Google Scholar 

  64. Cantor J, Haskins K. Effector function of diabetogenic CD4 Th1 T cell clones: a central role for TNF-alpha. J Immunol. 2005;175(11):7738–45.

    Article  CAS  PubMed  Google Scholar 

  65. Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol. 2009;27:693–733.

    Article  CAS  PubMed  Google Scholar 

  66. Matthews JR, et al. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992;20(15):3821–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sen P, et al. NF-kappa B hyperactivation has differential effects on the APC function of nonobese diabetic mouse macrophages. J Immunol. 2003;170(4):1770–80.

    Article  CAS  PubMed  Google Scholar 

  68. Poligone B, et al. Elevated NF-kappaB activation in nonobese diabetic mouse dendritic cells results in enhanced APC function. J Immunol. 2002;168(1):188–96.

    Article  CAS  PubMed  Google Scholar 

  69. Tse HM, Milton MJ, Piganelli JD. Mechanistic analysis of the immunomodulatory effects of a catalytic antioxidant on antigen-presenting cells: implication for their use in targeting oxidation-reduction reactions in innate immunity. Free Radic Biol Med. 2004;36(2):233–47.

    Article  CAS  PubMed  Google Scholar 

  70. Murphy K, et al. Janeway’s immunobiology, vol. xix. 8th ed. New York: Garland Science; 2012. 868 p.

    Google Scholar 

  71. Curtsinger JM, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol. 1999;162(6):3256–62.

    CAS  PubMed  Google Scholar 

  72. Kesarwani P, et al. Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2013;18(12):1497–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hildeman DA, et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity. 1999;10(6):735–44.

    Article  CAS  PubMed  Google Scholar 

  74. Williams MS, Henkart PA. Role of reactive oxygen intermediates in TCR-induced death of T cell blasts and hybridomas. J Immunol. 1996;157(6):2395–402.

    CAS  PubMed  Google Scholar 

  75. Jackson SH, et al. T cells express a phagocyte-type NADPH oxidase that is activated after T cell receptor stimulation. Nat Immunol. 2004;5(8):818–27.

    Article  CAS  PubMed  Google Scholar 

  76. Devadas S, et al. Discrete generation of superoxide and hydrogen peroxide by T cell receptor stimulation: selective regulation of mitogen-activated protein kinase activation and fas ligand expression. J Exp Med. 2002;195(1):59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Purushothaman D, Sarin A. Cytokine-dependent regulation of NADPH oxidase activity and the consequences for activated T cell homeostasis. J Exp Med. 2009;206(7):1515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wani R, et al. Isoform-specific regulation of Akt by PDGF-induced reactive oxygen species. Proc Natl Acad Sci U S A. 2011;108(26):10550–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Wani R, et al. Oxidation of Akt2 kinase promotes cell migration and regulates G1-S transition in the cell cycle. Cell Cycle. 2011;10(19):3263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med. 1997;22(1-2):269–85.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang W, et al. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int Immunol. 1999;11(6):943–50.

    Article  CAS  PubMed  Google Scholar 

  82. Gringhuis SI, et al. Displacement of linker for activation of T cells from the plasma membrane due to redox balance alterations results in hyporesponsiveness of synovial fluid T lymphocytes in rheumatoid arthritis. J Immunol. 2000;164(4):2170–9.

    Article  CAS  PubMed  Google Scholar 

  83. Gringhuis SI, et al. Effect of redox balance alterations on cellular localization of LAT and downstream T-cell receptor signaling pathways. Mol Cell Biol. 2002;22(2):400–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sena LA, et al. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity. 2013;38(2):225–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Delmastro MM, et al. Modulation of redox balance leaves murine diabetogenic TH1 T cells “LAG-3-ing” behind. Diabetes. 2012;61(7):1760–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Piganelli JD, et al. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes. 2002;51(2):347–55.

    Article  CAS  PubMed  Google Scholar 

  87. Sklavos MM, Tse HM, Piganelli JD. Redox modulation inhibits CD8 T cell effector function. Free Radic Biol Med. 2008;45(10):1477–86.

    Article  CAS  PubMed  Google Scholar 

  88. Dobbs C, Haskins K. Comparison of a T cell clone and of T cells from a TCR transgenic mouse: TCR transgenic T cells specific for self-antigen are atypical. J Immunol. 2001;166(4):2495–504.

    Article  CAS  PubMed  Google Scholar 

  89. Workman CJ, et al. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol. 2002;32(8):2255–63.

    Article  CAS  PubMed  Google Scholar 

  90. Workman CJ, Vignali DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol. 2003;33(4):970–9.

    Article  CAS  PubMed  Google Scholar 

  91. Li N, et al. Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J. 2007;26(2):494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008;29(5):258–89.

    Article  CAS  PubMed  Google Scholar 

  93. Van Wart HE, Birkedal-Hansen H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A. 1990;87(14):5578–82.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang Y, et al. Regulation of mature ADAM17 by redox agents for L-selectin shedding. J Immunol. 2009;182(4):2449–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Oberley-Deegan RE, et al. The antioxidant, MnTE-2-PyP, prevents side-effects incurred by prostate cancer irradiation. PLoS One. 2012;7(9), e44178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. J Clin Invest. 2003;112(12):1785–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Weisberg SP, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tataranni PA, Ortega E. A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes. 2005;54(4):917–27.

    Article  CAS  PubMed  Google Scholar 

  99. Pickup JC, Crook MA. Is type II diabetes mellitus a disease of the innate immune system? Diabetologia. 1998;41(10):1241–8.

    Article  CAS  PubMed  Google Scholar 

  100. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004;27(3):813–23.

    Article  PubMed  Google Scholar 

  101. Kanda H, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006;116(6):1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Evans JL, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003;52(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  103. Arkan MC, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.

    Article  CAS  PubMed  Google Scholar 

  104. Cai D, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 2005;11(2):183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hirosumi J, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.

    Article  CAS  PubMed  Google Scholar 

  106. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003;27 Suppl 3:S53–5.

    Article  CAS  PubMed  Google Scholar 

  107. Tuncman G, et al. Functional in vivo interactions between JNK1 and JNK2 isoforms in obesity and insulin resistance. Proc Natl Acad Sci U S A. 2006;103(28):10741–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tran L, et al. Pharmacologic treatment of Type 2 diabetes: injectable medications. Ann Pharmacother. 2015;49(6):700–14.

    Article  CAS  PubMed  Google Scholar 

  109. Tran L, et al. Pharmacologic treatment of Type 2 diabetes: oral medications. Ann Pharmacother. 2015;49(5):540–56.

    Article  CAS  PubMed  Google Scholar 

  110. Burcharth J. The epidemiology and risk factors for recurrence after inguinal hernia surgery. Dan Med J. 2014;61(5):B4846.

    PubMed  Google Scholar 

  111. Marks DH. Drug utilization, safety and clinical use of Actos and Avandia. Int J Risk Saf Med. 2013;25(1):39–51.

    PubMed  Google Scholar 

  112. Gad SC, et al. A nonclinical safety assessment of MnTE-2-PyP, a manganese porphyrin. Int J Toxicol. 2013;32(4):274–87.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon D. Piganelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coudriet, G.M., Previte, D.M., Piganelli, J.D. (2016). Using Metalloporphyrins to Preserve β Cell Mass and Inhibit Immune Responses in Diabetes. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_29

Download citation

Publish with us

Policies and ethics