Skip to main content

Anticancer Action of Mn Porphyrins in Head and Neck Cancer

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Manganese porphyrins have been successfully used preclinically as adjuvant therapies to radiotherapy and/or chemotherapy for tumors of multiple histologies, including brain, breast, prostate, and melanoma. In contrast, the literature regarding the use of Mn porphyrins in head and neck cancer (HNC) is conspicuously scant. Yet, HNC may be an ideal disease to target with Mn porphyrins. First, the pathologies and risk factors underlying HNC are linked to oxidative stress. In addition, there are several major sources of oxidative stress in HNC (i.e., products of smoking, hypoxia, virally induced gene expression, and immune cell infiltration) that drive tumor promotion and progression by contributing to genetic instability. Further, oxidative stress promotes tumorigenesis through induction of multiple signal transduction pathways and cellular and mitochondrial reactive oxygen species.

Although Mn porphyrins have not been used clinically in HNC to date, there are tantalizing suggestions that applying manganese superoxide dismutase (MnSOD)-based methods in preclinical HNC models are efficacious in the treatment of HNC. Thus, one focus of this chapter will be on historical use of MnSOD therapies to provide a rationale for future work using Mn porphyrins. In addition, the current literature demonstrating the use of Mn porphyrins as radiosensitizers in preclinical models will be discussed. Finally, we will highlight shifts in therapeutic approaches and epidemiological trends that researchers should be cognizant of as this field advances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weitzel DH, Tovmasyan A, Ashcraft KA, Rajic Z, Weitner T, Liu C, et al. Radioprotection of the brain white matter by Mn(III) N-butoxyethylpyridylporphyrin-based superoxide dismutase mimic, MnTnBuOE-2-PyP5+. Mol Cancer Ther. 2014;14(9):70–9.

    PubMed  PubMed Central  Google Scholar 

  2. Keir ST, Dewhirst MW, Kirkpatrick JP, Bigner DD, Batinic-Haberle I. Cellular redox modulator, ortho Mn(III) meso-tetrakis(N-n-hexylpyridinium-2-yl)porphyrin, MnTnHex-2-PyP(5+) in the treatment of brain tumors. Anticancer Agents Med Chem. 2011;11(2):202–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J, et al. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med. 2009;47(7):992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Makinde AY, Luo-Owen X, Rizvi A, Crapo JD, Pearlstein RD, Slater JM, et al. Effect of a metalloporphyrin antioxidant (MnTE-2-PyP) on the response of a mouse prostate cancer model to radiation. Anticancer Res. 2009;29(1):107–18.

    CAS  PubMed  Google Scholar 

  5. Gridley DS, Makinde AY, Luo X, Rizvi A, Crapo JD, Dewhirst MW, et al. Radiation and a metalloporphyrin radioprotectant in a mouse prostate tumor model. Anticancer Res. 2007;27(5A):3101–9.

    CAS  Google Scholar 

  6. Moeller BJ, Batinic-Haberle I, Spasojevic I, Rabbani ZN, Anscher MS, Vujaskovic Z, et al. A manganese porphyrin superoxide dismutase mimetic enhances tumor radioresponsiveness. Int J Radiat Oncol Biol Phys. 2005;63(2):545–52.

    Article  CAS  PubMed  Google Scholar 

  7. Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nat Rev Cancer. 2014;14(11):709–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res. 1988;48(11):3282–7.

    CAS  PubMed  Google Scholar 

  9. Jayaprakash V, Reid M, Hatton E, Merzianu M, Rigual N, Marshall J, et al. Human papillomavirus types 16 and 18 in epithelial dysplasia of oral cavity and oropharynx: a meta-analysis, 1985-2010. Oral Oncol. 2011;47(11):1048–54.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Uneri C, Sari M, Baglam T, Polat S, Yuksel M. Effects of vitamin E on cigarette smoke induced oxidative damage in larynx and lung. Laryngoscope. 2006;116(1):97–100.

    Article  PubMed  Google Scholar 

  11. Malpass GE, Arimilli S, Prasad GL, Howlett AC. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts. Toxicol Appl Pharmacol. 2014;279(2):211–9.

    Article  CAS  PubMed Central  Google Scholar 

  12. Williams VM, Filippova M, Filippov V, Payne KJ, Duerksen-Hughes P. Human papillomavirus type 16 E6* induces oxidative stress and DNA damage. J Virol. 2014;88(12):6751–61.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kamranvar SA, Masucci MG. The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia. 2011;25(6):1017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma N, Thanan R, Kobayashi H, Hammam O, Wishahi M, El Leithy T, et al. Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection. Biochem Biophys Res Commun. 2011;414(2):344–9.

    Article  CAS  PubMed  Google Scholar 

  15. Jimenez P, Piazuelo E, Sanchez MT, Ortego J, Soteras F, Lanas A. Free radicals and antioxidant systems in reflux esophagitis and Barrett’s esophagus. World J Gastroenterol. 2005;11(18):2697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langevin SM, Michaud DS, Marsit CJ, Nelson HH, Birnbaum AE, Eliot M, et al. Gastric reflux is an independent risk factor for laryngopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2013;22(6):1061–8.

    Article  PubMed Central  Google Scholar 

  17. Singh K, Kote S, Patthi B, Singla A, Singh S, Kundu H, et al. Relative risk of various head and neck cancers among different blood groups: an analytical study. J Clin Diagn Res. 2014;8(4):ZC25–8.

    Google Scholar 

  18. Lin FC, Chen PL, Tsao TY, Li CR, Jeng KC, Tsai SC. Prevalence of human papillomavirus and Epstein-Barr virus in salivary gland diseases. J Int Med Res. 2014;42(5):1093–101.

    Article  PubMed  Google Scholar 

  19. Horn-Ross PL, Ljung BM, Morrow M. Environmental factors and the risk of salivary gland cancer. Epidemiology. 1997;8(4):414–9.

    Article  CAS  PubMed  Google Scholar 

  20. Boukheris H, Ron E, Dores GM, Stovall M, Smith SA, Curtis RE. Risk of radiation-related salivary gland carcinomas among survivors of Hodgkin lymphoma: a population-based analysis. Cancer. 2008;113(11):3153–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wijffels KI, Hoogsteen IJ, Lok J, Rijken PF, Marres HA, de Wilde PC, et al. No detectable hypoxia in malignant salivary gland tumors: preliminary results. Int J Radiat Oncol Biol Phys. 2009;73(5):1319–25.

    Article  PubMed  Google Scholar 

  22. Roh JL, Cho KJ, Kwon GY, Choi SH, Nam SY, Kim SY. Prognostic values of pathologic findings and hypoxia markers in 21 patients with salivary duct carcinoma. J Surg Oncol. 2008;97(7):596–600.

    Article  CAS  PubMed  Google Scholar 

  23. Epperly MW, Carpenter M, Agarwal A, Mitra P, Nie S, Greenberger JS. Intraoral manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) radioprotective gene therapy decreases ionizing irradiation-induced murine mucosal cell cycling and apoptosis. In Vivo. 2004;18(4):401–10.

    CAS  PubMed  Google Scholar 

  24. Nagler RM, Reznick AZ, Slavin S, Nagler A. Partial protection of rat parotid glands from irradiation-induced hyposalivation by manganese superoxide dismutase. Arch Oral Biol. 2000;45(9):741–7.

    Article  CAS  PubMed  Google Scholar 

  25. Perez-Sayans M, Suarez-Penaranda JM, Pilar GD, Barros-Angueira F, Gandara-Rey JM, Garcia-Garcia A. Hypoxia-inducible factors in OSCC. Cancer Lett. 2011;313(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol. 2005;77(1):18–24.

    Article  PubMed  Google Scholar 

  27. Brizel DM, Dodge RK, Clough RW, Dewhirst MW. Oxygenation of head and neck cancer: changes during radiotherapy and impact on treatment outcome. Radiother Oncol. 1999;53(2):113–7.

    Article  CAS  PubMed  Google Scholar 

  28. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997;38(2):285–9.

    Article  CAS  PubMed  Google Scholar 

  29. Liu SY, Chang LC, Pan LF, Hung YJ, Lee CH, Shieh YS. Clinicopathologic significance of tumor cell-lined vessel and microenvironment in oral squamous cell carcinoma. Oral Oncol. 2008;44(3):277–85.

    Article  PubMed  Google Scholar 

  30. Brizel DM, Schroeder T, Scher RL, Walenta S, Clough RW, Dewhirst MW, et al. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2001;51(2):349–53.

    Article  CAS  PubMed  Google Scholar 

  31. Fu TY, Hou YY, Chu ST, Liu CF, Huang CH, Chen HC, et al. Manganese superoxide dismutase and glutathione peroxidase as prognostic markers in patients with buccal mucosal squamous cell carcinomas. Head Neck. 2011;33(11):1606–15.

    Article  PubMed  Google Scholar 

  32. Toh Y, Kuninaka S, Mori M, Oshiro T, Ikeda Y, Nakashima H, et al. Reduced expression of manganese superoxide dismutase mRNA may correlate with invasiveness in esophageal carcinoma. Oncology. 2000;59(3):223–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hermann B, Li Y, Ray MB, Wo JM, Martin 2nd RC. Association of manganese superoxide dismutase expression with progression of carcinogenesis in Barrett esophagus. Arch Surg. 2005;140(12):1204–9; discussion 9.

    Article  CAS  PubMed  Google Scholar 

  34. Martin RC, Liu Q, Wo JM, Ray MB, Li Y. Chemoprevention of carcinogenic progression to esophageal adenocarcinoma by the manganese superoxide dismutase supplementation. Clin Cancer Res. 2007;13(17):5176–82.

    Article  CAS  PubMed  Google Scholar 

  35. Schiffman SC, Li Y, Xiao D, Li X, Aiyer HS, Martin RC. The resistance of esophageal adenocarcinoma to bile salt insult is associated with manganese superoxide dismutase expression. J Surg Res. 2011;171(2):623–30.

    Article  CAS  PubMed  Google Scholar 

  36. Piyathilake CJ, Bell WC, Oelschlager DK, Heimburger DC, Grizzle WE. The pattern of expression of Mn and Cu-Zn superoxide dismutase varies among squamous cell cancers of the lung, larynx, and oral cavity. Head Neck. 2002;24(9):859–67.

    Article  PubMed  Google Scholar 

  37. Liu R, Oberley TD, Oberley LW. Transfection and expression of MnSOD cDNA decreases tumor malignancy of human oral squamous carcinoma SCC-25 cells. Hum Gene Ther. 1997;8(5):585–95.

    Article  CAS  PubMed  Google Scholar 

  38. Kalen AL, Sarsour EH, Venkataraman S, Goswami PC. Mn-superoxide dismutase overexpression enhances G2 accumulation and radioresistance in human oral squamous carcinoma cells. Antioxid Redox Signal. 2006;8(7–8):1273–81.

    Article  CAS  PubMed  Google Scholar 

  39. Epperly MW, Franicola D, Zhang X, Nie S, Greenberger JS. Effect of EGFR antagonists gefitinib (Iressa) and C225 (Cetuximab) on MnSOD-plasmid liposome transgene radiosensitization of a murine squamous cell carcinoma cell line. In Vivo. 2006;20(6B):791–6.

    CAS  PubMed  Google Scholar 

  40. Epperly MW, Lai SY, Kanai AJ, Mason N, Lopresi B, Dixon T, et al. Effectiveness of combined modality radiotherapy of orthotopic human squamous cell carcinomas in Nu/Nu mice using cetuximab, tirapazamine and MnSOD-plasmid liposome gene therapy. In Vivo. 2010;24(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Darby Weydert CJ, Smith BB, Xu L, Kregel KC, Ritchie JM, Davis CS, et al. Inhibition of oral cancer cell growth by adenovirusMnSOD plus BCNU treatment. Free Radic Biol Med. 2003;34(3):316–29.

    Article  CAS  Google Scholar 

  42. Lam EW, Hammad HM, Zwacka R, Darby CJ, Baumgardner KR, Davidson BL, et al. Immunolocalization and adenoviral vector-mediated manganese superoxide dismutase gene transfer to experimental oral tumors. J Dent Res. 2000;79(6):1410–7.

    Article  CAS  PubMed  Google Scholar 

  43. Schiffman SC, Li Y, Martin RC. The association of manganese superoxide dismutase expression in Barrett’s esophageal progression with MnTBAP and curcumin oil therapy. J Surg Res. 2012;176(2):535–41.

    Article  CAS  PubMed  Google Scholar 

  44. Nakajima S, Fujii T, Murakami N, Aburano T, Sakata I, Nakae Y, et al. Therapeutic and imaging capacity of tumor-localizing radiosensitive Mn-porphyrin KADT-F10 for SCCVII tumors in C3H/He mice. Cancer Lett. 2002;181(2):173–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ashcraft KA, Boss M-K, Tovmasyan A, Roy Choudhury K, Fontanella AN, Young KH, et al. Novel manganese-porphyrin superoxide dismutase-mimetic widens the therapeutic margin in a preclinical head and neck cancer model. Int J Radiat Oncol Biol Phys. 2015;93(4):892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takehara Y, Sakahara H, Masunaga H, Isogai S, Kodaira N, Takeda H, et al. Tumour enhancement with newly developed Mn-metalloporphyrin (HOP-9P) in magnetic resonance imaging of mice. Br J Cancer. 2001;84(12):1681–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nasu H, Takehara Y, Isogai S, Kodaira N, Takeda H, Saga T, et al. Tumor enhancement using Mn-metalloporphyrin in mice: magnetic resonance imaging and histopathologic correlation. J Magn Reson Imaging. 2004;20(2):294–9.

    Article  PubMed  Google Scholar 

  48. Aynali G, Dogan M, Sutcu R, Yuksel O, Yariktas M, Unal F, et al. Polymorphic variants of MnSOD Val16Ala, CAT-262 C<T and GPx1 Pro198Leu genotypes and the risk of laryngeal cancer in a smoking population. J Laryngol Otol. 2013;127(10):997–1000.

    Article  CAS  PubMed  Google Scholar 

  49. Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins—from superoxide dismutation to HO-driven pathways. Redox Biol. 2015;5:43–65.

    Article  CAS  PubMed Central  Google Scholar 

  50. Deschler DG, Richmon JD, Khariwala SS, Ferris RL, Wang MB. The “new” head and neck cancer patient-young, nonsmoker, nondrinker, and HPV positive: evaluation. Otolaryngology Head Neck Surg. 2014;151(3):375–80.

    Article  Google Scholar 

  51. Shaw RJ, Holsinger FC, Paleri V, Evans M, Tudur-Smith C, Ferris RL. Surgical trials in head & neck oncology: renaissance and revolution? Head Neck. 2015;37(7):927–30.

    Article  PubMed  Google Scholar 

  52. Masterson L, Moualed D, Liu ZW, Howard JE, Dwivedi RC, Tysome JR, et al. De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. Eur J Cancer. 2014;50(15):2636–48.

    Article  Google Scholar 

  53. Spitz MR. Epidemiology and risk factors for head and neck cancer. Semin Oncol. 1994;21(3):281–8.

    CAS  PubMed  Google Scholar 

  54. Tsao SW, Tsang CM, To KF, Lo KW. The role of Epstein-Barr virus in epithelial malignancies. J Pathol. 2015;235(2):323–33.

    Article  CAS  PubMed  Google Scholar 

  55. Poetsch M, Kleist B, Lorenz G, Herrmann FH. Different numerical chromosomal aberrations detected by FISH in oropharyngeal, hypopharyngeal and laryngeal squamous cell carcinoma. Histopathology. 1999;34(3):234–40.

    Article  CAS  PubMed  Google Scholar 

  56. Chaturvedi AK, Engels EA, Pfeiffer RM, Hernandez BY, Xiao W, Kim E, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29(32):4294–301.

    Article  PubMed Central  Google Scholar 

  57. Alos L, Moyano S, Nadal A, Alobid I, Blanch JL, Ayala E, et al. Human papillomaviruses are identified in a subgroup of sinonasal squamous cell carcinomas with favorable outcome. Cancer. 2009;115(12):2701–9.

    Article  PubMed  Google Scholar 

  58. Cook MB, Corley DA, Murray LJ, Liao LM, Kamangar F, Ye W, et al. Gastroesophageal reflux in relation to adenocarcinomas of the esophagus: a pooled analysis from the Barrett’s and Esophageal Adenocarcinoma Consortium (BEACON). PLoS One. 2014;9(7):e103508.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Dewhirst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ashcraft, K.A., Dewhirst, M.W. (2016). Anticancer Action of Mn Porphyrins in Head and Neck Cancer. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_19

Download citation

Publish with us

Policies and ethics