Skip to main content

Advances in Breast Cancer Therapy Using Nitric Oxide and Nitroxyl Donor Agents

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Over the past two decades, nitric oxide (NO) has been at the center of multiple contradictory findings regarding its role in cancer biology. With greater understanding, it is now well established that the biphasic effects of NO are concentration dependent. Low flux of NO less than 10 nM is essential for normal physiological functions such as vascular maintenance. Intermediate levels of NO higher than 100 nM affect critical pathways that lead to tumor progression, whereas higher flux NO (>800 nM) induces tumor regression. Nitric oxide synthase (NOS) enzymes, particularly inducible NOS (iNOS), have often been shown to exert both pro- and antitumor effects. The elucidation of the involvement of intermediate NO flux generated by iNOS during cancer progression has led to the rapid development of several classes of NOS inhibitors with potent therapeutic effects. In contrast, the generation of higher NO flux in the tumor microenvironment tips the balance to favor cytostasis and cell killing. Toward this end, several classes of NO donors (e.g., nitrate esters, S-nitrosothiols, and diazeniumdiolates) have been examined both in vitro and in vivo and have demonstrated vast potential as chemotherapeutic agents as well. Recently, nitroxyl (HNO) has emerged as a key player with promising therapeutic potential as it exhibits properties that are often orthogonal to NO. Significant potential of HNO in the treatment of cardiovascular disease, clinical usage as an alcohol deterrent agent, and chemotherapeutic activity are only a few of its properties that have recently been explored. In this chapter, we briefly review some of the key pathways/chemical modifications by which NO and HNO exert their physiological outcome in cancer biology. NOS inhibition and utilization of NO donors as effective therapeutic options for NO-based therapy, HNO donors and their utilization as chemo drugs, and lastly NO/HNO-based hybrid drugs are discussed to show the therapeutic depth and potential for NO and HNO in cancer treatment.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-30705-3_31

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-319-30705-3_31

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz SE. Trace atmospheric constituents: properties, transformations and fates, Advances in environmental science and technology, vol. 12. New York: Wiley; 1983.

    Google Scholar 

  2. Bradbury J. Medicine Nobel Prize awarded to US pharmacologists. Lancet. 1998;352:1287.

    Article  CAS  PubMed  Google Scholar 

  3. Hibbs Jr JB, Taintor RR, Vavrin Z, Rachlin EM. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988;157:87–94.

    Article  CAS  PubMed  Google Scholar 

  4. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric-oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Miwa M, Stuehr DJ, Marletta MA, Wishnok JS, Tannenbaum SR. Nitrosation of amines by stimulated macrophages. Carcinogenesis. 1987;8:955–8.

    Article  CAS  PubMed  Google Scholar 

  6. Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol. 1991;41:485–90.

    Article  CAS  PubMed  Google Scholar 

  7. Ignarro LJ. Nitric oxide-mediated vasorelaxation. Thromb Haemost. 1993;70:148–51.

    CAS  PubMed  Google Scholar 

  8. Bredt DS, Snyder SH. Nitric-oxide, a novel neuronal messenger. Neuron. 1992;8:3–11.

    Article  CAS  PubMed  Google Scholar 

  9. Radomski MW, Palmer RMJ, Moncada S. Endogenous nitric-oxide inhibits human-platelet adhesion to vascular endothelium. Lancet. 1987;2:1057–8.

    Article  CAS  PubMed  Google Scholar 

  10. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–50.

    Article  CAS  PubMed  Google Scholar 

  11. Marletta MA. Nitric oxide synthase structure and mechanism. J Biol Chem. 1993;268:12231–4.

    CAS  PubMed  Google Scholar 

  12. Lamas S, Marsden PA, Li GK, Tempst P, Michel T. Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci U S A. 1992;89:6348–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding AH, Troso T, Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992;256:225–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hope BT, Michael GJ, Knigge KM, Vincent SR. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc Natl Acad Sci U S A. 1991;88:2811–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mocellin S, Bronte V, Nitti D. Nitric oxide, a double edged sword in cancer biology: searching for therapeutic opportunities. Med Res Rev. 2007;27:317–52.

    Article  CAS  PubMed  Google Scholar 

  16. Modin A, Bjorne H, Herulf M, Alving K, Weitzberg E, Lundberg JO. Nitrite-derived nitric oxide: a possible mediator of ‘acidic-metabolic’ vasodilation. Acta Physiol Scand. 2001;171:9–16.

    CAS  PubMed  Google Scholar 

  17. Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med. 1998;25:434–56.

    Article  CAS  PubMed  Google Scholar 

  18. Stone JR, Marletta MA. Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric state. Biochemistry (Mosc). 1994;33:5636–40.

    Article  CAS  Google Scholar 

  19. Moro MA, Russell RJ, Cellek S, Lizasoain I, Su YC, DarleyUsmar VM, Radomski MW, Moncada S. cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad Sci U S A. 1996;93:1480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Moncada S, Higgs EA. Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest. 1991;21:361–74.

    Article  CAS  PubMed  Google Scholar 

  21. Moncada S, Palmer RMJ, Higgs EA. Nitric-oxide—physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    CAS  PubMed  Google Scholar 

  22. Wink DA, Grisham MB, Mitchell JB, Ford PC. Direct and indirect effects of nitric oxide in chemical reactions relevant to biology. Methods Enzymol. 1996;268:12–31.

    Article  CAS  PubMed  Google Scholar 

  23. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic Biol Med. 2008;45:18–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007;87:315–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, Espey MG, Fukuto JM, Feelisch M, Wink DA, Kass DA. Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci U S A. 2001;98:10463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N. Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med. 2003;34:33–43.

    Article  CAS  PubMed  Google Scholar 

  27. Miranda KM, Paolocci N, Katori T, Thomas DD, Ford E, Bartberger MD, Espey MG, Kass DA, Feelisch M, Fukuto JM, Wink DA. A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system. Proc Natl Acad Sci U S A. 2003;100:9196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paolocci N, Katori T, Champion HC, St. John ME, Miranda KM, Fukuto JM, Wink DA, Kass DA. Positive inotropic and lusitropic effects of HNO/NO-in failing hearts: independence from beta-adrenergic signaling. Proc Natl Acad Sci U S A. 2003;100:5537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nagasawa HT, DeMaster EG, Redfern B, Shirota FN, Goon DJ. Evidence for nitroxyl in the catalase-mediated bioactivation of the alcohol deterrent agent cyanamide. J Med Chem. 1990;33:3120–2.

    Article  CAS  PubMed  Google Scholar 

  30. Norris AJ, Sartippour MR, Lu M, Park T, Rao JY, Jackson MI, Fukuto JM, Brooks MN. Nitroxyl inhibits breast tumor growth and angiogenesis. Int J Cancer. 2008;122:1905–10.

    Article  CAS  PubMed  Google Scholar 

  31. Basudhar D, Cheng RC, Bharadwaj G, Ridnour LA, Wink DA, Miranda KM. Chemotherapeutic potential of diazeniumdiolate-based aspirin prodrugs in breast cancer. Free Radic Biol Med. 2015;83:101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smith PAS, Hein GE. The alleged role of nitroxyl in certain reactions of aldehydes and alkyl halides. J Am Chem Soc. 1960;82:5731–40.

    Article  CAS  Google Scholar 

  33. Kohout FC, Lampe FW. On role of nitroxyl molecule in reaction of hydrogen atoms with nitric oxide. J Am Chem Soc. 1965;87:5795.

    Article  CAS  Google Scholar 

  34. Hughes MN, Wimbledon PE. Chemistry of trioxodinitrates. 1. Decomposition of sodium trioxodinitrate (angelis salt) in aqueous-solution. J Chem Soc Dalton 1976;(8):703–7.

    Google Scholar 

  35. Fukuto JM, Wallace GC, Hszieh R, Chaudhuri G. Chemical oxidation of N-hydroxyguanidine compounds. Release of nitric oxide, nitroxyl and possible relationship to the mechanism of biological nitric oxide generation. Biochem Pharmacol. 1992;43:607–13.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M. No .NO from NO synthase. Proc Natl Acad Sci U S A. 1996;93:14492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Adak S, Wang Q, Stuehr DJ. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism. J Biol Chem. 2000;275:33554–61.

    Article  CAS  PubMed  Google Scholar 

  38. Wong PS, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT. Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry. 1998;37:5362–71.

    Article  CAS  PubMed  Google Scholar 

  39. Niketic V, Stojanovic S, Nikolic A, Spasic M, Michelson AM. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study. Free Radic Biol Med. 1999;27:992–6.

    Article  CAS  PubMed  Google Scholar 

  40. Saleem M, Ohshima H. Xanthine oxidase converts nitric oxide to nitroxyl that inactivates the enzyme. Biochem Biophys Res Commun. 2004;315:455–62.

    Article  CAS  PubMed  Google Scholar 

  41. Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J. 1998;332:9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopez BE, Rodriguez CE, Pribadi M, Cook NM, Shinyashiki M, Fukuto JM. Inhibition of yeast glycolysis by nitroxyl (HNO): a mechanism of HNO toxicity and implications to HNO biology. Arch Biochem Biophys. 2005;442:140–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wink DA, Feelisch M, Fukuto J, Chistodoulou D, Jourd'heuil D, Grisham MB, Vodovotz Y, Cook JA, Krishna M, DeGraff WG, Kim S, Gamson J, Mitchell JB. The cytotoxicity of nitroxyl: possible implications for the pathophysiological role of NO. Arch Biochem Biophys. 1998;351:66–74.

    Article  CAS  PubMed  Google Scholar 

  44. http://www.breastcancer.org/symptoms/understand_bc/statistics

  45. Obermajer N, Wong JL, Edwards RP, Odunsi K, Moysich K, Kalinski P. PGE(2)-driven induction and maintenance of cancer-associated myeloid-derived suppressor cells. Immunol Invest. 2012;41:635–57.

    Article  CAS  PubMed  Google Scholar 

  46. Dominguez PM, Ardavin C. Differentiation and function of mouse monocyte-derived dendritic cells in steady state and inflammation. Immunol Rev. 2010;234:90–104.

    Article  CAS  PubMed  Google Scholar 

  47. Ikonomidis I, Michalakeas CA, Parissis J, Paraskevaidis I, Ntai K, Papadakis I, Anastasiou-Nana M, Lekakis J. Inflammatory markers in coronary artery disease. Biofactors. 2012;38:320–8.

    Article  CAS  PubMed  Google Scholar 

  48. Takahashi M, Mutoh M, Ishigamori R, Fujii G, Imai T. Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents. Semin Immunopathol. 2013;35:203–27.

    Article  CAS  PubMed  Google Scholar 

  49. Sugiura H, Ichinose M. Nitrative stress in inflammatory lung diseases. Nitric Oxide. 2011;25:138–44.

    Article  CAS  PubMed  Google Scholar 

  50. Glynn SA, Boersma BJ, Dorsey TH, Yi M, Yfantis HG, Ridnour LA, Martin DN, Switzer CH, Hudson RS, Wink DA, Lee DH, Stephens RM, Ambs S. Increased NOS2 predicts poor survival in estrogen receptor-negative breast cancer patients. J Clin Invest. 2010;120:3843–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Loibl S, Buck A, Strank C, von Minckwitz G, Roller M, Sinn HP, Schini-Kerth V, Solbach C, Strebhardt K, Kaufmann M. The role of early expression of inducible nitric oxide synthase in human breast cancer. Eur J Cancer. 2005;41:265–71.

    Article  CAS  PubMed  Google Scholar 

  52. Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA. Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res. 2000;6:4768–75.

    CAS  PubMed  Google Scholar 

  53. Raspollini MR, Amunni G, Villanucci A, Boddi V, Baroni G, Taddei A, Taddei GL. Expression of inducible nitric oxide synthase and cyclooxygenase-2 in ovarian cancer: correlation with clinical outcome. Gynecol Oncol. 2004;92:806–12.

    Article  CAS  PubMed  Google Scholar 

  54. Connelly ST, Macabeo-Ong M, Dekker N, Jordan RC, Schmidt BL. Increased nitric oxide levels and iNOS over-expression in oral squamous cell carcinoma. Oral Oncol. 2005;41:261–7.

    Article  CAS  PubMed  Google Scholar 

  55. Brennan PA, Dennis S, Poller D, Quintero M, Puxeddu R, Thomas GJ. Inducible nitric oxide synthase: correlation with extracapsular spread and enhancement of tumor cell invasion in head and neck squamous cell carcinoma. Head Neck. 2008;30:208–14.

    Article  PubMed  Google Scholar 

  56. Cronauer MV, Ince Y, Engers R, Rinnab L, Weidemann W, Suschek CV, Burchardt M, Kleinert H, Wiedenmann J, Sies H, Ackermann R, Kroncke KD. Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression. Oncogene. 2007;26:1875–84.

    Article  CAS  PubMed  Google Scholar 

  57. Loibl S, von Minckwitz G, Weber S, Sinn HP, Schini-Kerth VB, Lobysheva I, Nepveu F, Wolf G, Strebhardt K, Kaufmann M. Expression of endothelial and inducible nitric oxide synthase in benign and malignant lesions of the breast and measurement of nitric oxide using electron paramagnetic resonance spectroscopy. Cancer. 2002;95:1191–8.

    Article  CAS  PubMed  Google Scholar 

  58. Cobbs CS, Brenman JE, Aldape KD, Bredt DS, Israel MA. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 1995;55:727–30.

    CAS  PubMed  Google Scholar 

  59. Singh S, Gupta AK. Nitric oxide: role in tumour biology and iNOS/NO-based anticancer therapies. Cancer Chemother Pharmacol. 2011;67:1211–24.

    Article  CAS  PubMed  Google Scholar 

  60. Hickok JR, Thomas DD. Nitric oxide and cancer therapy: the emperor has NO clothes. Curr Pharm Des. 2010;16:381–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wink DA, Ridnour LA, Hussain SP, Harris CC. The reemergence of nitric oxide and cancer. Nitric Oxide. 2008;19:65–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Hibbs Jr JB, Taintor RR, Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987;235:473–6.

    Article  CAS  PubMed  Google Scholar 

  63. Ferry-Dumazet H, Mamani-Matsuda M, Dupouy M, Belloc F, Thiolat D, Marit G, Arock M, Reiffers J, Mossalayi MD. Nitric oxide induces the apoptosis of human BCR-ABL-positive myeloid leukemia cells: evidence for the chelation of intracellular iron. Leukemia. 2002;16:708–15.

    Article  CAS  PubMed  Google Scholar 

  64. Ford PC. Reactions of NO and nitrite with heme models and proteins. Inorg Chem. 2010;49:6226–39.

    Article  CAS  PubMed  Google Scholar 

  65. Flores-Santana W, Switzer C, Ridnour LA, Basudhar D, Mancardi D, Donzelli S, Thomas DD, Miranda KM, Fukuto JM, Wink DA. Comparing the chemical biology of NO and HNO. Arch Pharm Res. 2009;32:1139–53.

    Article  CAS  PubMed  Google Scholar 

  66. Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 2000;14:1889–900.

    Article  CAS  PubMed  Google Scholar 

  67. Anand P, Stamler JS. Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med. 2012;90:233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Laval F, Wink DA, Laval J. A discussion of mechanisms of NO genotoxicity: implication of inhibition of DNA repair proteins. Rev Physiol Biochem Pharmacol. 1997;131:175–91.

    CAS  PubMed  Google Scholar 

  69. Graziewicz M, Wink DA, Laval F. Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis. 1996;17:2501–5.

    Article  CAS  PubMed  Google Scholar 

  70. Hickok JR, Vasudevan D, Jablonski K, Thomas DD. Oxygen dependence of nitric oxide-mediated signaling. Redox Biol. 2013;1:203–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Thomas DD, Liu X, Kantrow SP, Lancaster Jr JR. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A. 2001;98:355–60.

    Article  CAS  PubMed  Google Scholar 

  72. Thomas DD. Breathing new life into nitric oxide signaling: a brief overview of the interplay between oxygen and nitric oxide. Redox Biol. 2015;5:225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lunt SJ, Chaudary N, Hill RP. The tumor microenvironment and metastatic disease. Clin Exp Metastasis. 2009;26:19–34.

    Article  PubMed  Google Scholar 

  74. Cosse JP, Michiels C. Tumour hypoxia affects the responsiveness of cancer cells to chemotherapy and promotes cancer progression. Anticancer Agents Med Chem. 2008;8:790–7.

    Article  CAS  PubMed  Google Scholar 

  75. Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY. Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell. 2007;26:63–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Thomas DD, Espey MG, Ridnour LA, Hofseth LJ, Mancardi D, Harris CC, Wink DA. Hypoxic inducible factor 1 alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci U S A. 2004;101:8894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jadeski LC, Hum KO, Chakraborty C, Lala PK. Nitric oxide promotes murine mammary tumour growth and metastasis by stimulating tumour cell migration, invasiveness and angiogenesis. Int J Cancer. 2000;86:30–9.

    Article  CAS  PubMed  Google Scholar 

  78. Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in tumor angiogenesis. Cancer Treat Res. 2004;117:155–67.

    Article  CAS  PubMed  Google Scholar 

  79. Bing RJ, Miyataka M, Rich KA, Hanson N, Wang X, Slosser HD, Shi SR. Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clin Cancer Res. 2001;7:3385–92.

    CAS  PubMed  Google Scholar 

  80. Lim KH, Ancrile BB, Kashatus DF, Counter CM. Tumour maintenance is mediated by eNOS. Nature. 2008;452:646–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci U S A. 2005;102:13147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer. 2009;9:182–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Loffek S, Schilling O, Franzke CW. Series “matrix metalloproteinases in lung health and disease”: biological role of matrix metalloproteinases: a critical balance. Eur Respir J. 2011;38:191–208.

    Article  CAS  PubMed  Google Scholar 

  84. Tallant C, Marrero A, Gomis-Ruth FX. Matrix metalloproteinases: fold and function of their catalytic domains. Biochim Biophys Acta. 2010;1:20–8.

    Article  CAS  Google Scholar 

  85. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998;58:1048–51.

    CAS  PubMed  Google Scholar 

  86. Itoh T, Tanioka M, Matsuda H, Nishimoto H, Yoshioka T, Suzuki R, Uehira M. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis. 1999;17:177–81.

    Article  CAS  PubMed  Google Scholar 

  87. Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297:1186–90.

    Article  CAS  PubMed  Google Scholar 

  88. Ridnour LA, Windhausen AN, Isenberg JS, Yeung N, Thomas DD, Vitek MP, Roberts DD, Wink DA. Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci U S A. 2007;104:16898–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Patruno A, Pesce M, Marrone A, Speranza L, Grilli A, De Lutiis MA, Felaco M, Reale M. Activity of matrix metallo proteinases (MMPs) and the tissue inhibitor of MMP (TIMP)-1 in electromagnetic field-exposed THP-1 cells. J Cell Physiol. 2012;227:2767–74.

    Article  CAS  PubMed  Google Scholar 

  90. Ridnour LA, Barasch KM, Windhausen AN, Dorsey TH, Lizardo MM, Yfantis HG, Lee DH, Switzer CH, Cheng RY, Heinecke JL, Brueggemann E, Hines HB, Khanna C, Glynn SA, Ambs S, Wink DA. Nitric oxide synthase and breast cancer: role of TIMP-1 in NO-mediated Akt activation. PLoS One. 2012;7:e44081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Klimp AH, de Vries EG, Scherphof GL, Daemen T. A potential role of macrophage activation in the treatment of cancer. Crit Rev Oncol Hematol. 2002;44:143–61.

    Article  CAS  PubMed  Google Scholar 

  92. Hofseth LJ, Saito S, Hussain SP, Espey MG, Miranda KM, Araki Y, Jhappan C, Higashimoto Y, He P, Linke SP, Quezado MM, Zurer I, Rotter V, Wink DA, Appella E, Harris CC. Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci U S A. 2003;100:143–8.

    Article  CAS  PubMed  Google Scholar 

  93. DeMaster EG, Redfern B, Nagasawa HT. Mechanisms of inhibition of aldehyde dehydrogenase by nitroxyl, the active metabolite of the alcohol deterrent agent cyanamide. Biochem Pharmacol. 1998;55:2007–15.

    Article  CAS  PubMed  Google Scholar 

  94. Miranda KM, Yamada K, Espey MG, Thomas DD, DeGraff W, Mitchell JB, Krishna MC, Colton CA, Wink DA. Further evidence for distinct reactive intermediates from nitroxyl and peroxynitrite: effects of buffer composition on the chemistry of Angeli’s salt and synthetic peroxynitrite. Arch Biochem Biophys. 2002;401:134–44.

    Article  CAS  PubMed  Google Scholar 

  95. Chazotte-Aubert L, Oikawa S, Gilibert I, Bianchini F, Kawanishi S, Ohshima H. Cytotoxicity and site-specific DNA damage induced by nitroxyl anion (NO-) in the presence of hydrogen peroxide—implications for various pathophysiological conditions. J Biol Chem. 1999;274:20909–15.

    Article  CAS  PubMed  Google Scholar 

  96. Ivanova J, Salama G, Clancy RM, Schor NF, Nylander KD, Stoyanovsky DA. Formation of nitroxyl and hydroxyl radical in solutions of sodium trioxodinitrate: effects of pH and cytotoxicity. J Biol Chem. 2003;278:42761–8.

    Article  CAS  PubMed  Google Scholar 

  97. Dastoor Z, Dreyer JL. Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci. 2001;114:1643–53.

    CAS  PubMed  Google Scholar 

  98. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  99. Gatenby RA, Gillies RJ. Glycolysis in cancer: a potential target for therapy. Int J Biochem Cell Biol. 2007;39:1358–66.

    Article  CAS  PubMed  Google Scholar 

  100. Sidorkina O, Espey MG, Miranda KM, Wink DA, Laval J. Inhibition of poly(ADP-ribose) polymerase (PARP) by nitric oxide and reactive nitrogen oxide species. Free Radic Biol Med. 2003;35:1431–8.

    Article  CAS  PubMed  Google Scholar 

  101. Bulut AS, Erden E, Sak SD, Doruk H, Kursun N, Dincol D. Significance of inducible nitric oxide synthase expression in benign and malignant breast epithelium: an immunohistochemical study of 151 cases. Virchows Arch. 2005;447:24–30.

    Article  CAS  PubMed  Google Scholar 

  102. Vakkala M, Kahlos K, Lakari E, Paakko P, Kinnula V, Soini Y. Inducible nitric oxide synthase expression, apoptosis, and angiogenesis in in situ and invasive breast carcinomas. Clin Cancer Res. 2000;6:2408–16.

    CAS  PubMed  Google Scholar 

  103. Tschugguel W, Schneeberger C, Unfried G, Czerwenka K, Weninger W, Mildner M, Gruber DM, Sator MO, Waldhor T, Huber JC. Expression of inducible nitric oxide synthase in human breast cancer depends on tumor grade. Breast Cancer Res Treat. 1999;56:145–51.

    Article  CAS  PubMed  Google Scholar 

  104. Thomsen LL, Miles DW, Happerfield L, Bobrow LG, Knowles RG, Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995;72:41–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ambs S, Merriam WG, Bennett WP, Felley-Bosco E, Ogunfusika MO, Oser SM, Klein S, Shields PG, Billiar TR, Harris CC. Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res. 1998;58:334–41.

    CAS  PubMed  Google Scholar 

  106. Rao CV, Kawamori T, Hamid R, Reddy BS. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis. 1999;20:641–4.

    Article  CAS  PubMed  Google Scholar 

  107. Rao CV, Indranie C, Simi B, Manning PT, Connor JR, Reddy BS. Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res. 2002;62:165–70.

    CAS  PubMed  Google Scholar 

  108. Okayama H, Saito M, Oue N, Weiss JM, Stauffer J, Takenoshita S, Wiltrout RH, Hussain SP, Harris CC. NOS2 enhances KRAS-induced lung carcinogenesis, inflammation and microRNA-21 expression. Int J Cancer. 2013;132:9–18.

    Article  CAS  PubMed  Google Scholar 

  109. Massi D, Franchi A, Sardi I, Magnelli L, Paglierani M, Borgognoni L, Maria Reali U, Santucci M. Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001;194:194–200.

    Article  CAS  PubMed  Google Scholar 

  110. Eyler CE, Wu Q, Yan K, MacSwords JM, Chandler-Militello D, Misuraca KL, Lathia JD, Forrester MT, Lee J, Stamler JS, Goldman SA, Bredel M, McLendon RE, Sloan AE, Hjelmeland AB, Rich JN. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell. 2011;146:53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maddaford S, Annedi SC, Ramnauth J, Rakhit S. Advancements in the development of nitric oxide synthase inhibitors (Chapter 2). In: John EM, editor. Annu. Rep. Med. Chem. New York: Academic; 2009. p. 27–50.

    Google Scholar 

  112. Tafi A, Angeli L, Venturini G, Travagli M, Corelli F, Botta M. Computational studies of competitive inhibitors of nitric oxide synthase (NOS) enzymes: towards the development of powerful and isoform-selective inhibitors. Curr Med Chem. 2006;13:1929–46.

    Article  CAS  PubMed  Google Scholar 

  113. Salerno L, Sorrenti V, Di Giacomo C, Romeo G, Siracusa MA. Progress in the development of selective nitric oxide synthase (NOS) inhibitors. Curr Pharm Des. 2002;8:177–200.

    Article  CAS  PubMed  Google Scholar 

  114. Shang ZJ, Li ZB, Li JR. In vitro effects of nitric oxide synthase inhibitor L-NAME on oral squamous cell carcinoma: a preliminary study. Int J Oral Maxillofac Surg. 2006;35:539–43.

    Article  PubMed  Google Scholar 

  115. Zhang Y, Bissing JW, Xu L, Ryan AJ, Martin SM, Miller Jr FJ, Kregel KC, Buettner GR, Kerber RE. Nitric oxide synthase inhibitors decrease coronary sinus-free radical concentration and ameliorate myocardial stunning in an ischemia-reperfusion model. J Am Coll Cardiol. 2001;38:546–54.

    Article  CAS  PubMed  Google Scholar 

  116. Boer R, Ulrich WR, Klein T, Mirau B, Haas S, Baur I. The inhibitory potency and selectivity of arginine substrate site nitric-oxide synthase inhibitors is solely determined by their affinity toward the different isoenzymes. Mol Pharmacol. 2000;58:1026–34.

    CAS  PubMed  Google Scholar 

  117. Jadeski LC, Lala PK. Nitric oxide synthase inhibition by N(G)-nitro-L-arginine methyl ester inhibits tumor-induced angiogenesis in mammary tumors. Am J Pathol. 1999;155:1381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Wilt JH, Manusama ER, van Etten B, van Tiel ST, Jorna AS, Seynhaeve AL, ten Hagen TL, Eggermont AM. Nitric oxide synthase inhibition results in synergistic anti-tumour activity with melphalan and tumour necrosis factor alpha-based isolated limb perfusions. Br J Cancer. 2000;83:1176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Sikora AG, Gelbard A, Davies MA, Sano D, Ekmekcioglu S, Kwon J, Hailemichael Y, Jayaraman P, Myers JN, Grimm EA, Overwijk WW. Targeted inhibition of inducible nitric oxide synthase inhibits growth of human melanoma in vivo and synergizes with chemotherapy. Clin Cancer Res. 2010;16:1834–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Heinecke JL, Ridnour LA, Cheng RY, Switzer CH, Lizardo MM, Khanna C, Glynn SA, Hussain SP, Young HA, Ambs S, Wink DA. Tumor microenvironment-based feed-forward regulation of NOS2 in breast cancer progression. Proc Natl Acad Sci U S A. 2014;111(17):6323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liby K, Royce DB, Williams CR, Risingsong R, Yore MM, Honda T, Gribble GW, Dmitrovsky E, Sporn TA, Sporn MB. The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice. Cancer Res. 2007;67:2414–9.

    Article  CAS  PubMed  Google Scholar 

  122. Chen T, Nines RG, Peschke SM, Kresty LA, Stoner GD. Chemopreventive effects of a selective nitric oxide synthase inhibitor on carcinogen-induced rat esophageal tumorigenesis. Cancer Res. 2004;64:3714–7.

    Article  CAS  PubMed  Google Scholar 

  123. Janakiram NB, Rao CV. iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med Chem. 2012;4:2193–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Southan GJ, Szabo C. Selective pharmacological inhibition of distinct nitric oxide synthase isoforms. Biochem Pharmacol. 1996;51:383–94.

    Article  CAS  PubMed  Google Scholar 

  125. Volke V, Wegener G, Bourin M, Vasar E. Antidepressant- and anxiolytic-like effects of selective neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole in mice. Behav Brain Res. 2003;140:141–7.

    Article  CAS  PubMed  Google Scholar 

  126. Garvey EP, Oplinger JA, Furfine ES, Kiff RJ, Laszlo F, Whittle BJ, Knowles RG. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J Biol Chem. 1997;272:4959–63.

    Article  CAS  PubMed  Google Scholar 

  127. Zhao Y, Huo M, Xu Z, Wang Y, Huang L. Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials. 2015;68:54–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Parker JO. Nitrate therapy in stable angina pectoris. N Engl J Med. 1987;316:1635–42.

    Article  CAS  PubMed  Google Scholar 

  129. Torfgard KE, Ahlner J. Mechanisms of action of nitrates. Cardiovasc Drugs Ther. 1994;8:701–17.

    Article  CAS  PubMed  Google Scholar 

  130. Horowitz JD, Antman EM, Lorell BH, Barry WH, Smith TW. Potentiation of the cardiovascular effects of nitroglycerin by N-acetylcysteine. Circulation. 1983;68:1247–53.

    Article  CAS  PubMed  Google Scholar 

  131. Thatcher RGJ, Weldon H. NO problem for nitroglycerin: organic nitrate chemistry and therapy. Chem Soc Rev. 1998;27:331–7.

    Article  CAS  Google Scholar 

  132. Postovit LM, Adams MA, Lash GE, Heaton JP, Graham CH. Nitric oxide-mediated regulation of hypoxia-induced B16F10 melanoma metastasis. Int J Cancer. 2004;108:47–53.

    Article  CAS  PubMed  Google Scholar 

  133. Yasuda H, Nakayama K, Watanabe M, Suzuki S, Fuji H, Okinaga S, Kanda A, Zayasu K, Sasaki T, Asada M, Suzuki T, Yoshida M, Yamanda S, Inoue D, Kaneta T, Kondo T, Takai Y, Sasaki H, Yanagihara K, Yamaya M. Nitroglycerin treatment may enhance chemosensitivity to docetaxel and carboplatin in patients with lung adenocarcinoma. Clin Cancer Res. 2006;12:6748–57.

    Article  CAS  PubMed  Google Scholar 

  134. Frederiksen LJ, Sullivan R, Maxwell LR, Macdonald-Goodfellow SK, Adams MA, Bennett BM, Siemens DR, Graham CH. Chemosensitization of cancer in vitro and in vivo by nitric oxide signaling. Clin Cancer Res. 2007;13:2199–206.

    Article  CAS  PubMed  Google Scholar 

  135. Frederiksen LJ, Siemens DR, Heaton JP, Maxwell LR, Adams MA, Graham CH. Hypoxia induced resistance to doxorubicin in prostate cancer cells is inhibited by low concentrations of glyceryl trinitrate. J Urol. 2003;170:1003–7.

    Article  CAS  PubMed  Google Scholar 

  136. Millet A, Bettaieb A, Renaud F, Prevotat L, Hammann A, Solary E, Mignotte B, Jeannin JF. Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology. 2002;123:235–46.

    Article  CAS  PubMed  Google Scholar 

  137. Siemens DR, Heaton JP, Adams MA, Kawakami J, Graham CH. Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology. 2009;74:878–83.

    Article  PubMed  Google Scholar 

  138. Yasuda H, Yamaya M, Nakayama K, Sasaki T, Ebihara S, Kanda A, Asada M, Inoue D, Suzuki T, Okazaki T, Takahashi H, Yoshida M, Kaneta T, Ishizawa K, Yamanda S, Tomita N, Yamasaki M, Kikuchi A, Kubo H, Sasaki H. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol. 2006;24:688–94.

    Article  CAS  PubMed  Google Scholar 

  139. Matthews NE, Adams MA, Maxwell LR, Gofton TE, Graham CH. Nitric oxide-mediated regulation of chemosensitivity in cancer cells. J Natl Cancer Inst. 2001;93:1879–85.

    Article  CAS  PubMed  Google Scholar 

  140. Barsoum IB, Hamilton TK, Li X, Cotechini T, Miles EA, Siemens DR, Graham CH. Hypoxia induces escape from innate immunity in cancer cells via increased expression of ADAM10: role of nitric oxide. Cancer Res. 2011;71:7433–41.

    Article  CAS  PubMed  Google Scholar 

  141. Ng ESM, Cheng ZJ, Ellis A, Ding H, Jiang YF, Li Y, Hollenberg MD, Triggle CR. Nitrosothiol stores in vascular tissue: modulation by ultraviolet light, acetylcholine and ionomycin. Eur J Pharmacol. 2007;560:183–92.

    Article  CAS  PubMed  Google Scholar 

  142. Huerta S, Chilka S, Bonavida B. Nitric oxide donors: novel cancer therapeutics (review). Int J Oncol. 2008;33:909–27.

    CAS  PubMed  Google Scholar 

  143. Wang PG, Xian M, Tang XP, Wu XJ, Wen Z, Cai TW, Janczuk AJ. Nitric oxide donors: chemical activities and biological applications. Chem Rev. 2002;102:1091–134.

    Article  CAS  PubMed  Google Scholar 

  144. Kamoshima W, Kitamura Y, Nomura Y, Taniguchi T. Possible involvement of ADP-ribosylation of particular enzymes in cell death induced by nitric oxide-donors in human neuroblastoma cells. Neurochem Int. 1997;30:305–11.

    Article  CAS  PubMed  Google Scholar 

  145. Kitamura Y, Kamoshima W, Shimohama S, Nomura Y, Taniguchi T. Nitric oxide donor-induced p53-sensitive cell death is enhanced by Bcl-2 reduction in human neuroblastoma cells. Neurochem Int. 1998;32:93–102.

    Article  CAS  PubMed  Google Scholar 

  146. Park IC, Woo SH, Park MJ, Lee HC, Lee SJ, Hong YJ, Lee SH, Hong SI, Rhee CH. Ionizing radiation and nitric oxide donor sensitize Fas-induced apoptosis via up-regulation of Fas in human cervical cancer cells. Oncol Rep. 2003;10:629–33.

    CAS  PubMed  Google Scholar 

  147. de Luca A, Moroni N, Serafino A, Primavera A, Pastore A, Pedersen JZ, Petruzzelli R, Farrace MG, Pierimarchi P, Moroni G, Federici G, Sinibaldi Vallebona P, Lo Bello M. Treatment of doxorubicin-resistant MCF7/Dx cells with nitric oxide causes histone glutathionylation and reversal of drug resistance. Biochem J. 2011;440:175–83.

    Article  PubMed  CAS  Google Scholar 

  148. Giri S, Rattan R, Deshpande M, Maguire JL, Johnson Z, Graham RP, Shridhar V. Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer. PLoS One. 2014;9(6):e97897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Keefer LK. Fifty years of diazeniumdiolate research. From laboratory curiosity to broad-spectrum biomedical advances. ACS Chem Biol. 2011;6:1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hrabie JA, Keefer LK. Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chem Rev. 2002;102:1135–54.

    Article  CAS  PubMed  Google Scholar 

  151. Davies KM, Wink DA, Saavedra JE, Keefer LK. Chemistry of the diazeniumdiolates. 2. Kinetics and mechanism of dissociation to nitric oxide in aqueous solution. J Am Chem Soc. 2001;123:5473–81.

    Article  CAS  PubMed  Google Scholar 

  152. Keefer LK, Flippen-Anderson JL, George C, Shanklin AP, Dunams TA, Christodoulou D, Saavedra JE, Sagan ES, Bohle DS. Chemistry of the diazeniumdiolates. 1. Structural and spectral characteristics of the [N(O)NO]-functional group. Nitric Oxide. 2001;5:377–94.

    Article  CAS  PubMed  Google Scholar 

  153. Srinivasan A, Kebede N, Saavedra JE, Nikolaitchik AV, Brady DA, Yourd E, Davies KM, Keefer LK, Toscano JP. Chemistry of the diazeniumdiolates. 3. Photoreactivity. J Am Chem Soc. 2001;123:5465–72.

    Article  CAS  PubMed  Google Scholar 

  154. Saavedra JE, Shami PJ, Wang LY, Davies KM, Booth MN, Citro ML, Keefer LK. Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: in vitro antileukemic activity. J Med Chem. 2000;43:261–9.

    Article  CAS  PubMed  Google Scholar 

  155. Shami PJ, Saavedra JE, Wang LY, Bonifant CL, Diwan BA, Singh SV, Gu YJ, Fox SD, Buzard GS, Citro ML, Waterhouse DJ, Davies KM, Ji XH, Keefer LK. JS-K, a glutathione/glutathione S-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol Cancer Ther. 2003;2:409–17.

    CAS  PubMed  Google Scholar 

  156. Saavedra JE, Srinivasan A, Buzard GS, Davies KM, Waterhouse DJ, Inami K, Wilde TC, Citro ML, Cuellar M, Deschamps JR, Parrish D, Shami PJ, Findlay VJ, Townsend DM, Tew KD, Singh S, Jia L, Ji XH, Keefer LK. PABA/NO as an anticancer lead: analogue synthesis, structure revision, solution chemistry, reactivity toward glutathione, and in vitro activity. J Med Chem. 2006;49:1157–64.

    Article  CAS  PubMed  Google Scholar 

  157. Maciag AE, Holland RJ, Kim Y, Kumari V, Luthers CE, Sehareen WS, Biswas D, Morris NL, Ji X, Anderson LM, Saavedra JE, Keefer LK. Nitric oxide (NO) releasing poly ADP-ribose polymerase 1 (PARP-1) inhibitors targeted to glutathione S-transferase P1-overexpressing cancer cells. J Med Chem. 2014;57:2292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kiziltepe T, Hideshima T, Ishitsuka K, Ocio EM, Raje N, Catley L, Li CQ, Trudel LJ, Yasui H, Vallet S, Kutok JL, Chauhan D, Mitsiades CS, Saavedra JE, Wogan GN, Keefer LK, Shami PJ, Anderson KC. JS-K, a GST-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood. 2007;110:709–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Weyerbrock A, Walbridge S, Pluta RM, Saavedra JE, Keefer LK, Oldfield EH. Selective opening of the blood-tumor barrier by a nitric oxide donor and long-term survival in rats with C6 gliomas. J Neurosurg. 2003;99:728–37.

    Article  CAS  PubMed  Google Scholar 

  160. Cook JA, Krishna MC, Pacelli R, DeGraff W, Liebmann J, Mitchell JB, Russo A, Wink DA. Nitric oxide enhancement of melphalan-induced cytotoxicity. Br J Cancer. 1997;76:325–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Muir CP, Adams MA, Graham CH. Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells. Breast Cancer Res Treat. 2006;96:169–76.

    Article  CAS  PubMed  Google Scholar 

  162. Deng L, Zhang E, Chen C. Synergistic interaction of beta-galactosyl-pyrrolidinyl diazeniumdiolate with cisplatin against three tumor cells. Arch Pharm Res. 2013;36:619–25.

    Article  CAS  PubMed  Google Scholar 

  163. Wink DA, Cook JA, Christodoulou D, Krishna MC, Pacelli R, Kim S, DeGraff W, Gamson J, Vodovotz Y, Russo A, Mitchell JB. Nitric oxide and some nitric oxide donor compounds enhance the cytotoxicity of cisplatin. Nitric Oxide. 1997;1:88–94.

    Article  CAS  PubMed  Google Scholar 

  164. Huerta-Yepez S, Vega M, Jazirehi A, Garban H, Hongo F, Cheng G, Bonavida B. Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression. Oncogene. 2004;23:4993–5003.

    Article  CAS  PubMed  Google Scholar 

  165. Miranda KM, Katori T, Torres de Holding CL, Thomas L, Ridnour LA, McLendon WJ, Cologna SM, Dutton AS, Champion HC, Mancardi D, Tocchetti CG, Saavedra JE, Keefer LK, Houk KN, Fukuto JM, Kass DA, Paolocci N, Wink DA. Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in vivo. J Med Chem. 2005;48:8220–8.

    Article  CAS  PubMed  Google Scholar 

  166. Jarry A, Charrier L, Bou-Hanna C, Devilder MC, Crussaire V, Denis MG, Vallette G, Laboisse CL. Position in cell cycle controls the sensitivity of colon cancer cells to nitric oxide-dependent programmed cell death. Cancer Res. 2004;64:4227–34.

    Article  CAS  PubMed  Google Scholar 

  167. Shao C, Furusawa Y, Aoki M. Sper/NO-induced reversible proliferation inhibition and cycle arrests associated with a micronucleus induction in HSG cells. Nitric Oxide. 2003;8:83–8.

    Article  CAS  PubMed  Google Scholar 

  168. Pervin S, Singh R, Chaudhuri G. Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1. Proc Natl Acad Sci U S A. 2001;98:3583–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Simeone AM, Colella S, Krahe R, Johnson MM, Mora E, Tari AM. N-(4-Hydroxyphenyl)retinamide and nitric oxide pro-drugs exhibit apoptotic and anti-invasive effects against bone metastatic breast cancer cells. Carcinogenesis. 2006;27:568–77.

    Article  CAS  PubMed  Google Scholar 

  170. Shami PJ, Kaur G, Thillainathan J, Jia L, Saavedra JE, Keefer LK. JS-K, a novel nitric oxide (NO) generator, shows potent anti-angiogenic activity. Blood. 2004;104:931A.

    Google Scholar 

  171. Shami PJ, Saavedra JE, Bonifant CL, Chu J, Udupi V, Malaviya S, Carr BI, Kar S, Wang M, Jia L, Ji X, Keefer LK. Antitumor activity of JS-K [O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J Med Chem. 2006;49:4356–66.

    Article  CAS  PubMed  Google Scholar 

  172. Kitagaki J, Yang Y, Saavedra JE, Colburn NH, Keefer LK, Perantoni AO. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild-type p53. Oncogene. 2009;28:619–24.

    Article  CAS  PubMed  Google Scholar 

  173. Maciag AE, Saavedra JE, Chakrapani H. The nitric oxide prodrug JS-K and its structural analogues as cancer therapeutic agents. Anticancer Agents Med Chem. 2009;9:798–803.

    Article  CAS  PubMed  Google Scholar 

  174. Kiziltepe T, Anderson KC, Kutok JL, Jia L, Boucher KM, Saavedra JE, Keefer LK, Shami PJ. JS-K has potent anti-angiogenic activity in vitro and inhibits tumour angiogenesis in a multiple myeloma model in vivo. J Pharm Pharmacol. 2010;62:145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Maciag AE, Chakrapani H, Saavedra JE, Morris NL, Holland RJ, Kosak KM, Shami PJ, Anderson LM, Keefer LK. The nitric oxide prodrug JS-K is effective against non-small-cell lung cancer cells in vitro and in vivo: involvement of reactive oxygen species. J Pharmacol Exp Ther. 2011;336:313–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. McMurtry V, Saavedra JE, Nieves-Alicea R, Simeone AM, Keefer LK, Tari AM. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells. Int J Oncol. 2011;38:963–71.

    CAS  PubMed  Google Scholar 

  177. Duan SF, Cai S, Yang QH, Forrest ML. Multi-arm polymeric nanocarrier as a nitric oxide delivery platform for chemotherapy of head and neck squamous cell carcinoma. Biomaterials. 2012;33:3243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Maciag AE, Holland RJ, Robert Cheng YS, Rodriguez LG, Saavedra JE, Anderson LM, Keefer LK. Nitric oxide-releasing prodrug triggers cancer cell death through deregulation of cellular redox balance. Redox Biol. 2013;1:115–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Liu J, Li C, Qu W, Leslie E, Bonifant CL, Buzard GS, Saavedra JE, Keefer LK, Waalkes MP. Nitric oxide prodrugs and metallochemotherapeutics: JS-K and CB-3-100 enhance arsenic and cisplatin cytolethality by increasing cellular accumulation. Mol Cancer Ther. 2004;3:709–14.

    CAS  PubMed  Google Scholar 

  180. Angeli A. Nitrohydroxylamine. Gazz Chim Ital. 1896;26:17–25.

    CAS  Google Scholar 

  181. Dutton AS, Fukuto JM, Houk KN. Mechanisms of HNO and NO production from Angeli’s salt: density functional and CBS-QB3 theory predictions. J Am Chem Soc. 2004;126:3795–800.

    Article  CAS  PubMed  Google Scholar 

  182. Salmon DJ, Torres de Holding CL, Thomas L, Peterson KV, Goodman GP, Saavedra JE, Srinivasan A, Davies KM, Keefer LK, Miranda KM. HNO and NO release from a primary amine-based diazeniumdiolate as a function of pH. Inorg Chem. 2011;50:3262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Drago RS, Karstett BR. Reaction of nitrogen(II) oxide with various primary and secondary amines. J Am Chem Soc. 1961;83:1819–22.

    Article  Google Scholar 

  184. Bharadwaj G, Benini PG, Basudhar D, Ramos-Colon CN, Johnson GM, Larriva MM, Keefer LK, Andrei D, Miranda KM. Analysis of the HNO and NO donating properties of alicyclic amine diazeniumdiolates. Nitric Oxide. 2014;2:70–8.

    Article  CAS  Google Scholar 

  185. Maragos CM, Morley D, Wink DA, Dunams TM, Saavedra JE, Hoffman A, Bove AA, Isaac L, Hrabie JA, Keefer LK. Complexes of NO with nucleophiles as agents for the controlled biological release of nitric-oxide-vasorelaxant effects. J Med Chem. 1991;34:3242–7.

    Article  CAS  PubMed  Google Scholar 

  186. Saavedra JE, Billiar TR, Williams DL, Kim Y-M, Watkins SC, Keefer LK. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-Î ± -induced apoptosis and toxicity in the liver. J Med Chem. 1997;40:1947–54.

    Article  CAS  PubMed  Google Scholar 

  187. Tang X, Xian M, Trikha M, Honn KV, Wang PG. Synthesis of peptide-diazeniumdiolate conjugates: towards enzyme activated antitumor agents. Tetrahedron Lett. 2001;42:2625–9.

    Article  CAS  Google Scholar 

  188. Makings LR, Tsien RY. Caged nitric oxide. Stable organic molecules from which nitric oxide can be photoreleased. J Biol Chem. 1994;269:6282–5.

    CAS  PubMed  Google Scholar 

  189. Saavedra JE, Srinivasan A, Bonifant CL, Chu J, Shanklin AP, Flippen-Anderson JL, Rice WG, Turpin JA, Davies KM, Keefer LK. The secondary amine/nitric oxide complex ion R2N[N(O)NO] as nucleophile and leaving group in SNAr reactions. J Org Chem. 2001;66:3090–8.

    Article  CAS  PubMed  Google Scholar 

  190. Saavedra JE, Bohle DS, Smith KN, George C, Deschamps JR, Parrish D, Ivanic J, Wang YN, Citro ML, Keefer LK. Chemistry of the diazeniumdiolates. O- versus N-alkylation of the RNH[N(O)NO](-) ion. J Am Chem Soc. 2004;126:12880–7.

    Article  CAS  PubMed  Google Scholar 

  191. Holland RJ, Paulisch R, Cao Z, Keefer LK, Saavedra JE, Donzelli S. Enzymatic generation of the NO/HNO-releasing IPA/NO anion at controlled rates in physiological media using beta-galactosidase. Nitric Oxide. 2013;35:131–6.

    Article  CAS  PubMed  Google Scholar 

  192. Huang Z, Kaur J, Bhardwaj A, Alsaleh N, Reisz JA, DuMond JF, King SB, Seubert JM, Zhang Y, Knaus EE. O2-sulfonylethyl protected isopropylamine diazen-1-ium-1,2-diolates as nitroxyl (HNO) donors: synthesis, β-elimination fragmentation, HNO release, positive inotropic properties, and blood pressure lowering studies. J Med Chem. 2012;55(22):10262–71.

    Article  CAS  PubMed  Google Scholar 

  193. Andrei D, Salmon DJ, Donzelli S, Wahab A, Klose JR, Citro ML, Saavedra JE, Wink DA, Miranda KM, Keefer LK. Dual mechanisms of HNO generation by a nitroxyl prodrug of the diazeniumdiolate (NONOate) class. J Am Chem Soc. 2010;132:16526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bonner FT, Ko YH. Kinetic, isotopic, and nitrogen-15 NMR study of N-hydroxybenzenesulfonamide decomposition: an nitrosyl hydride (HNO) source reaction. Inorg Chem. 1992;31:2514–9.

    Article  CAS  Google Scholar 

  195. Zamora R, Grzesiok A, Weber H, Feelisch M. Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty’s acid: a comparison with Angeli’s salt. Biochem J. 1995;312:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Nagasawa HT, Lee MJ, Kwon CH, Shirota FN, DeMaster EG. An N-hydroxylated derivative of cyanamide that inhibits yeast aldehyde dehydrogenase. Alcohol. 1992;9:349–53.

    Article  CAS  PubMed  Google Scholar 

  197. Shirota FN, Goon DJ, DeMaster EG, Nagasawa HT. Nitrosyl cyanide, a putative metabolic oxidation product of the alcohol-deterrent agent cyanamide. Biochem Pharmacol. 1996;52:141–7.

    Article  CAS  PubMed  Google Scholar 

  198. Muri EM, Nieto MJ, Sindelar RD, Williamson JS. Hydroxamic acids as pharmacological agents. Curr Med Chem. 2002;9:1631–53.

    Article  CAS  PubMed  Google Scholar 

  199. King SB. N-hydroxyurea and acyl nitroso compounds as nitroxyl (HNO) and nitric oxide (NO) donors. Curr Top Med Chem. 2005;5:665–73.

    Article  CAS  PubMed  Google Scholar 

  200. Huang J, Sommers EM, Kim-Shapiro DB, King SB. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J Am Chem Soc. 2002;124:3473–80.

    Article  CAS  PubMed  Google Scholar 

  201. Samuni Y, Wink DA, Krishna MC, Mitchell JB, Goldstein S. Suberoylanilide hydroxamic acid radiosensitizes tumor hypoxic cells in vitro through the oxidation of nitroxyl to nitric oxide. Free Radic Biol Med. 2014;73:291–8.

    Article  CAS  PubMed  Google Scholar 

  202. Xu YP, Mull CD, Bonifant CL, Yasaki G, Palmer EC, Shields H, Ballas SK, Kim-Shapiro DB, King SB. Nitrosylation of sickle cell hemoglobin by hydroxyurea. J Org Chem. 1998;63:6452–3.

    Article  CAS  PubMed  Google Scholar 

  203. Cai TWB, Tang XP, Nagorski J, Brauschweiger PG, Wang PG. Synthesis and cytotoxicity of 5-fluorouracil/diazeniumdiolate conjugates. Biorg Med Chem. 2003;11:4971–5.

    Article  CAS  Google Scholar 

  204. Chegaev K, Riganti C, Lazzarato L, Rolando B, Guglielmo S, Campia I, Fruttero R, Bosia A, Gasco A. Nitric oxide donor doxorubicins accumulate into Doxorubicin-resistant human colon cancer cells inducing cytotoxicity. ACS Med Chem Lett. 2011;2:494–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Rigas B, Kashfi K. Nitric-oxide-donating NSAIDs as agents for cancer prevention. Trends Mol Med. 2004;10:324–30.

    Article  CAS  PubMed  Google Scholar 

  206. Rao CV, Reddy BS, Steele VE, Wang CX, Liu XP, Ouyang NT, Patlolla JMR, Simi B, Kopelovich L, Rigas B. Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets. Mol Cancer Ther. 2006;5:1530–8.

    Article  CAS  PubMed  Google Scholar 

  207. Hundley TR, Rigas B. Nitric oxide-donating aspirin inhibits colon cancer cell growth via mitogen-activated protein kinase activation. J Pharmacol Exp Ther. 2006;316:25–34.

    Article  CAS  PubMed  Google Scholar 

  208. Nortcliffe A, Ekstrom AG, Black JR, Ross JA, Habib FK, Botting NP, O’Hagan D. Synthesis and biological evaluation of nitric oxide-donating analogues of sulindac for prostate cancer treatment. Bioorg Med Chem. 2014;22:756–61.

    Article  CAS  PubMed  Google Scholar 

  209. Velazquez C, Rao PNP, Knaus EE. Novel nonsteroidal antiinflammatory drugs possessing a nitric oxide donor diazen-1-ium-1,2-diolate moiety: design, synthesis, biological evaluation, and nitric oxide release studies. J Med Chem. 2005;48:4061–7.

    Article  CAS  PubMed  Google Scholar 

  210. Basudhar D, Bharadwaj G, Cheng RY, Jain S, Shi S, Heinecke JL, Holland RJ, Ridnour LA, Caceres VM, Spadari-Bratfisch RC, Paolocci N, Velázquez-Martínez CA, Wink DA, Miranda KM. Synthesis and chemical and biological comparison of nitroxyl- and nitric oxide-releasing diazeniumdiolate-based aspirin derivatives. J Med Chem. 2013;56:7804–20.

    Article  CAS  PubMed  Google Scholar 

  211. Abdellatif KR, Chowdhury MA, Velazquez CA, Huang Z, Dong Y, Das D, Yu G, Suresh MR, Knaus EE. Celecoxib prodrugs possessing a diazen-1-ium-1,2-diolate nitric oxide donor moiety: synthesis, biological evaluation and nitric oxide release studies. Bioorg Med Chem Lett. 2010;20:4544–9.

    Article  CAS  PubMed  Google Scholar 

  212. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231:232–5.

    Article  CAS  PubMed  Google Scholar 

  213. Wallace JL. Nonsteroidal anti-inflammatory drugs and gastroenteropathy: the second hundred years. Gastroenterology. 1997;112:1000–16.

    Article  CAS  PubMed  Google Scholar 

  214. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L, Isakson P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci U S A. 1994;91:12013–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Tesei A, Ulivi P, Fabbri F, Rosetti M, Leonetti C, Scarsella M, Zupi G, Amadori D, Bolla M, Zoli W. In vitro and in vivo evaluation of NCX 4040 cytotoxic activity in human colon cancer cell lines. J Transl Med. 2005;3:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Bratasz A, Weir NM, Parinandi NL, Zweier JL, Sridhar R, Ignarro LJ, Kuppusamy P. Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by NCX-4016, a nitro derivative of aspirin. Proc Natl Acad Sci U S A. 2006;103:3914–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fiorucci S, Santucci L, Gresele P, Faccino RM, Del Soldato P, Morelli A. Gastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic study. Gastroenterology. 2003;124:600–7.

    Article  CAS  PubMed  Google Scholar 

  218. Gori T, Parker JD. Nitrate tolerance—a unifying hypothesis. Circulation. 2002;106:2510–3.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Intramural Research Program of the NIH, Cancer and Inflammation Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa A. Ridnour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Basudhar, D., Miranda, K.M., Wink, D.A., Ridnour, L.A. (2016). Advances in Breast Cancer Therapy Using Nitric Oxide and Nitroxyl Donor Agents. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_15

Download citation

Publish with us

Policies and ethics