Skip to main content

Measurement-Based Probabilistic Timing Analysis for Graphics Processor Units

  • Conference paper
Architecture of Computing Systems – ARCS 2016 (ARCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9637))

Included in the following conference series:

Abstract

Purely analytical worst-case execution time (WCET) estimation approaches for Graphics Processor Units (GPUs) cannot go far because of insufficient public information for the hardware. Therefore measurement-based probabilistic timing analysis (MBPTA) seems the way forward. We recently demonstrated MBPTA for GPUs, based on Extreme Value Theory (EVT) of the “Block Maxima” paradigm. In this newer work, we formulate and experimentally evaluate a more robust MBPTA approach based on the EVT “Peak over Threshold” paradigm with a complete set of tests for verifying EVT applicability. It optimally selects parameters to best-fit the input measurements for more accurate probabilistic WCET estimates. Different system configuration parameters (cache arrangements, thread block size) and their effect on the pWCET are considered, enhancing models of worst-case GPU behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Intra-warp control flow divergence is handled with predicates/masking and NOPs.

  2. 2.

    A random variable is a variable whose value is subject to variations due to chance; it can take on a set of possible different values, each with an associated probability.

  3. 3.

    Admittedly, then the execution time is that of the modified kernel.

  4. 4.

    The same holds for deterministic approaches, which derive safe WCET estimates from incomplete system models or assumptions about the system behavior.

  5. 5.

    By extreme execution time measurements we intend execution time relatively far from the average values or relatively separated in time.

  6. 6.

    As stated in [29], p. 47: “There are many factors involved in selecting block size, and inevitably some experimentation is required.”

References

  1. Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing CUDA workloads using a detailed GPU simulator. In: Proceedings of the IEEE ISPASS (2009)

    Google Scholar 

  2. Bautin, M., Dwarakinath, A., Chiueh, T.: Graphics engine resource management. In: Proceedings of the 15th ACM/SPIE MMCN (2008)

    Google Scholar 

  3. Berezovskyi, K., Bletsas, K., Andersson, B.: Makespan computation for GPU threads running on a single streaming multiprocessor. In: Proceedings of the 24th ECRTS (2012)

    Google Scholar 

  4. Berezovskyi, K., Bletsas, K., Petters, S.M.: Faster makespan estimation for GPU threads on a single streaming multiprocessor. In: Proceedings of the ETFA (2013)

    Google Scholar 

  5. Berezovskyi, K., Santinelli, L., Bletsas, K., Tovar, E.: WCET measurement-based and EVT characterisation of CUDA kernels. In: Proceedings of the RTNS (2014)

    Google Scholar 

  6. Betts, A., Donaldson, A.F.: Estimating the WCET of GPU-accelerated applications using hybrid analysis. In: Proceedings of the 25th ECRTS, pp. 193–202 (2013)

    Google Scholar 

  7. Brock, W., Scheinkman, J., Dechert, W., LeBaron, B.: A test for independence based on the correlation dimension. Econometric Rev. 15(3), 197–235 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Chang, L.-W., Rodrigues, C.I., Lv, J., Wang, Z., Hwu, W.-M.: Adaptive cache management for energy-efficient gpu computing. In: Proceedings of the 47th IEEE/ACM International Symposium on Microarchitecture, pp. 343–355 (2014)

    Google Scholar 

  9. Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega, T., Kosmidis, L., Abella, J., Mezzeti, E., Quinones, E., Cazorla, F.J.: Measurement-based probabilistic timing analysis for multi-path programs. In: Proceedings of the 23nd ECRTS (2012)

    Google Scholar 

  10. Davis, R.I., Santinelli, L., Altmeyer, S., Maiza, C., Cucu-Grosjean, L.: Analysis of probabilistic cache related pre-emption delays. In: Proceedings of the 25th IEEE Euromicro Conference on Real-Time Systems (ECRTS) (2013)

    Google Scholar 

  11. Díaz, J., Garcia, D., Kim, K., Lee, C., Bello, L., Lopez, J.M., Mirabella, O.: Stochastic analysis of periodic real-time systems. In: 23rd RTSS, pp. 289–300 (2002)

    Google Scholar 

  12. Elliott, G., Ward, B., Anderson, J.: GPUSync: architecture-aware management of GPUs for predictable multi-GPU real-time systems. In: Proceedings of the RTSS (2013)

    Google Scholar 

  13. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and Finance. Applications of mathematics. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  14. Gumbel, E.: Statistics of Extremes. Columbia University Press, New York (1958)

    MATH  Google Scholar 

  15. Hirvisalo, V.: On static timing analysis of GPU kernels. In: Proceedings of the WCET (2014)

    Google Scholar 

  16. Hsing, T.: On tail index estimation using dependent data. Ann. Stat. 19(3), 1547–1569 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, S., Lakshmanan, K., Kumar, A., Kelkar, M., Ishikawa, Y., Rajkumar, R.: RGEM: a responsive GPGPU execution model for runtime engines RTSS (2011)

    Google Scholar 

  18. Kato, S., Lakshmanan, K., Rajkumar, R., Ishikawa, Y.:Timegraph: GPU scheduling for real-time multi-tasking environments. In: USENIX ATC (2011)

    Google Scholar 

  19. Kato, S., McThrow, M., Maltzahn, C., Brandt, S.: Gdev: First-class GPU resource management in the operating system. In: Proceedings of the USENIX ATC (2012)

    Google Scholar 

  20. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root? J. Econometrics 54, 1–3 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Conditions for the convergence in distribution of maxima of stationary normal processes. Stoch. Process. Appl. 8(2), 131–139 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leadbetter, M.R., Lindgren, G., Rootzén, H.: Extremes and Related Properties of Random Sequences and Processes. Springer, New York (1983)

    Book  MATH  Google Scholar 

  23. Lu, Y., Nolte, T., Bate, I., Cucu-Grosjean, L.: A statistical response-time analysis of real-time embedded systems. In: Proceedings of the RTSS, pp. 351–362 (2012)

    Google Scholar 

  24. Majdandzic, I., Trefftz, C., Wolffe, G.: Computation of voronoi diagrams using a graphics processing unit. In: IEEE International Conference on Electro/Information Technolog (EIT) (2008)

    Google Scholar 

  25. Mangharam, R., Saba, A.A.: Anytime algorithms for GPU architectures. In: Proceedings of the 32nd IEEE Real-Time Systems Symposium (RTSS) (2011)

    Google Scholar 

  26. Mejzler, D.: On the problem of the limit distribution for the maximal term of a variational series. Lvov. Politehn. Inst. Naucn Zap. Ser. Fiz. Mat. 38, 90–109 (1956)

    MathSciNet  Google Scholar 

  27. Membarth, R., Lupp, J.-H., Hannig, F., Teich, J., Körner, M., Eckert, W.: Dynamic task-scheduling and resource management for GPU accelerators in medical imaging. In: Herkersdorf, A., Römer, K., Brinkschulte, U. (eds.) ARCS 2012. LNCS, vol. 7179, pp. 147–159. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Northrop, P.: Semiparametric estimation of the extremal index using block maxima. Technical report, Dept of Statistical Science, UCL (2005)

    Google Scholar 

  29. NVIDIA Corp. CUDA C Best Practices Guide. DG-05603-001\(\_\)v5.5

    Google Scholar 

  30. NVIDIA Corp. Whitepaper: Kepler GK110 (2012). www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

  31. Rossbach, C.J., Currey, J., Silberstein, M., Ray, B., Witchel, E.: Ptask: Operating system abstractions to manage GPUs as computedevices. ACM SOSP (2011)

    Google Scholar 

  32. Santinelli, L., Morio, J., Dufour, G., Jacquemart, D.: On the sustainability of the extreme value theory for WCET estimation. In: International WCET Workshop (2014)

    Google Scholar 

Download references

Acknowledgements

Work partially supported by National Funds through FCT/MEC (Portuguese Foundation for Science and Technology) and co-financed by ERDF (European Regional Development Fund) under the PT2020 Partnership, within project UID/CEC/04234/2013 (CISTER); also by FCT/MEC and the EU ARTEMIS JU within projects ARTEMIS/0003/2012 - JU grant 333053 (CONCERTO) and ARTEMIS/0001/2013 - JU grant 621429 (EMC2); by FCT/MEC and ESF (European Social Fund) through POPH (Portuguese Human Potential Operational Program), under PhD grant SFRH/BD/82069/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kostiantyn Berezovskyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Berezovskyi, K., Guet, F., Santinelli, L., Bletsas, K., Tovar, E. (2016). Measurement-Based Probabilistic Timing Analysis for Graphics Processor Units. In: Hannig, F., Cardoso, J.M.P., Pionteck, T., Fey, D., Schröder-Preikschat, W., Teich, J. (eds) Architecture of Computing Systems – ARCS 2016. ARCS 2016. Lecture Notes in Computer Science(), vol 9637. Springer, Cham. https://doi.org/10.1007/978-3-319-30695-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30695-7_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30694-0

  • Online ISBN: 978-3-319-30695-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics