Skip to main content
Book cover

Rhizomania pp 85–107Cite as

Molecular Biology and Replication of Beet Necrotic Yellow Vein Virus

  • Chapter
  • First Online:

Abstract

Rhizomania disease biology is closely linked to the replication and expression of the beet necrotic yellow vein virus (BNYVV) genome. Understanding viral processes within infected cells and tissues allows fundamental biological discoveries and could inspire new antiviral strategies. BNYVV amplification involves the direct translation of genomic RNAs to produce the viral machinery (replicase), which in turn recognizes genomic RNAs for their specific replication. Nonetheless, the production and expression of subgenomic messenger RNAs are also required to complete the viral life cycle. Whereas certain nonstructural proteins are dedicated to replicase formation and viral movement, other components specifically interact with cellular proteins to overcome innate defense mechanisms and to induce cellular reprogramming. These interactions permit completion of the viral life cycle and allow transmission of the virus. All these processes need to be orchestrated within a coordinated expression pattern to insure optimal viral amplification. In this chapter, the known properties of viral products will be described, and hypotheses about the regulatory mechanisms driving BNYVV biology will be presented. Among regulatory elements, the structure of genomic RNAs plays an essential role in regulating BNYVV protein expression, encapsidation, and movement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant-Microbe Interact 18:194–204

    Article  CAS  PubMed  Google Scholar 

  • Balmori E, Gilmer D, Richards K, Guilley H, Jonard G (1993) Mapping the promoter for subgenomic RNA synthesis on beet necrotic yellow vein virus RNA 3. Biochimie 75:517–521

    Article  CAS  PubMed  Google Scholar 

  • Bleykasten C, Gilmer D, Guilley H, Richards KE, Jonard G (1996) Beet necrotic yellow vein virus 42 kDa triple gene block protein binds nucleic acid in vitro. J Gen Virol 77:889–897

    Article  CAS  PubMed  Google Scholar 

  • Bleykasten-Grosshans C, Guilley H, Bouzoubaa S, Richards KE, Jonard G (1997) Independent expression of the first two triple gene block proteins of beet necrotic yellow vein virus complements virus defective in the corresponding gene but expression of the third protein inhibits viral cell-to-cell movement. Mol Plant-Microbe Interact 10:240–246

    Article  CAS  Google Scholar 

  • Bouzoubaa S, Quillet L, Guilley H, Jonard G, Richards K (1987) Nucleotide sequence of beet necrotic yellow vein virus RNA-1. J Gen Virol 68:615–626

    Article  CAS  Google Scholar 

  • Bouzoubaa S, Niesbach-Klosgen U, Jupin I, Guilley H, Richards K, Jonard G (1991) Shortened forms of beet necrotic yellow vein virus RNA-3 and -4: internal deletions and a subgenomic RNA. J Gen Virol 72:259–266

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Miyanishi M, Andika IB, Kondo H, Tamada T (2008) Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. J Gen Virol 89:1314–1323

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T (2011) The evolutionary history of beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. Mol Plant-Microbe Interact 24:207–218

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Hleibieh K, Delbianco A, Klein E, Ratti C, Ziegler-Graff V, Bouzoubaa S, Gilmer D (2013) The benyvirus RNA silencing suppressor is essential for long-distance movement, requires both zinc-finger and NoLS basic residues but not a nucleolar localization for its silencing-suppression activity. Mol Plant-Microbe Interact 26:168–181

    Article  CAS  PubMed  Google Scholar 

  • Covelli L, Klein E, Gilmer D (2009) The first 17 amino acids of the beet necrotic yellow vein virus RNA-5-encoded p26 protein are sufficient to activate transcription in a yeast one-hybrid system. Arch Virol 154:347–351

    Article  CAS  PubMed  Google Scholar 

  • D’Alonzo M, Delbianco A, Lanzoni C, Autonell CR, Gilmer D, Ratti C (2012) Beet soil-borne mosaic virus RNA-4 encodes a 32 kDa protein involved in symptom expression and in virus transmission through Polymyxa betae. Virology 423:187–194

    Article  PubMed  Google Scholar 

  • Den Boon JA, Diaz A, Ahlquist P (2010) Cytoplasmic viral replication complexes. Cell Host Microbe 8:77–85

    Article  Google Scholar 

  • Dohm JC, Minoche AE, Holtgrawe D, Capella-Gutierrez S, Zakrzewski F, Tafer H, Rupp O, Sorensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldon T, Lehrach H, Weisshaar B, Himmelbauer H (2014) The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505:546–549

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Morant M, Ritzenthaler C, Stussi-Garaud C, Guilley H, Richards K, Jonard G, Bouzoubaa S, Gilmer D (2000) P42 movement protein of beet necrotic yellow vein virus is targeted by the movement proteins P13 and P15 to punctate bodies associated with plasmodesmata. Mol Plant-Microbe Interact 13:520–528

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Dunoyer P, Guilley H, Richards K, Jonard G, Bouzoubaa S (2001) Beet necrotic yellow vein virus particles localize to mitochondria during infection. Virology 286:256–262

    Article  CAS  PubMed  Google Scholar 

  • Erhardt M, Vetter G, Gilmer D, Bouzoubaa S, Richards K, Jonard G, Guilley H (2005) Subcellular localization of the triple gene block movement proteins of beet necrotic yellow vein virus s by electron microscopy. Virology 340:155–166

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Sun H, Wang Y, Zhang Y, Wang X, Li D, Yu J, Han C (2014) Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to beet necrotic yellow vein virus infections containing or lacking RNA4. PLoS One 9:e85284

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan H, Zhang Y, Sun H, Liu J, Wang Y, Wang X, Li D, Yu J, Han C (2015) Transcriptome analysis of Beta macrocarpa and identification of differentially expressed transcripts in response to beet necrotic yellow vein virus. PLoS One 10:e0132277

    Article  PubMed  PubMed Central  Google Scholar 

  • Firth AE, Wills NM, Gesteland RF, Atkins JF (2011) Stimulation of stop codon readthrough: frequent presence of an extended 3′ RNA structural element. Nucleic Acids Res 39:6679–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavazzi C, Isel C, Fournier E, Moules V, Cavalier A, Thomas D, Lina B, Marquet R (2013) An in vitro network of intermolecular interactions between viral RNA segments of an avian H5N2 influenza A virus: comparison with a human H3N2 virus. Nucleic Acids Res 41:1241–1254

    Article  CAS  PubMed  Google Scholar 

  • Gilmer D, Ratti C (2012) Benyvirus. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier, San Diego CA, USA, pp 1133–1138

    Google Scholar 

  • Gilmer D, Bouzoubaa S, Hehn A, Guilley H, Richards K, Jonard G (1992a) Efficient cell-to-cell movement of beet necrotic yellow vein virus requires 3′ proximal genes located on RNA 2. Virology 189:40–47

    Article  CAS  PubMed  Google Scholar 

  • Gilmer D, Richards K, Jonard G, Guilley H (1992b) Cis-active sequences near the 5′-termini of beet necrotic yellow vein virus RNAs 3 and 4. Virology 190:55–67

    Article  CAS  PubMed  Google Scholar 

  • Gilmer D, Allmang C, Ehresmann C, Guilley H, Richards K, Jonard G, Ehresmann B (1993) The secondary structure of the 5′-noncoding region of beet necrotic yellow vein virus RNA 3: evidence for a role in viral RNA replication. Nucleic Acids Res 21:1389–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilley H, Bortolamiol D, Jonard G, Bouzoubaa S, Ziegler-Graff V (2009) Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus. J Gen Virol 90:2536–2541

    Article  CAS  PubMed  Google Scholar 

  • Haeberle AM, Stussi-Garaud C (1995) In situ localization of the non-structural protein P25 encoded by beet necrotic yellow vein virus RNA 3. J Gen Virol 76:643–650

    Article  CAS  PubMed  Google Scholar 

  • Haeberle AM, Stussi-Garaud C, Schmitt C, Garaud JC, Richards KE, Guilley H, Jonard G (1994) Detection by immunogold labelling of P75 readthrough protein near an extremity of beet necrotic yellow vein virus particles. Arch Virol 134:195–203

    Article  CAS  PubMed  Google Scholar 

  • Hehn A, Bouzoubaa S, Jonard G, Guilley H, Richards KE (1994) Artificial defective interfering RNAs derived from RNA2 of beet necrotic yellow vein virus. Arch Virol 135:143–151

    Article  CAS  PubMed  Google Scholar 

  • Hehn A, Bouzoubaa S, Bate N, Twell D, Marbach J, Richards K, Guilley H, Jonard G (1995) The small cysteine-rich protein P14 of beet necrotic yellow vein virus regulates accumulation of RNA2 in cis and coat protein in trans. Virology 210:73–81

    Article  CAS  PubMed  Google Scholar 

  • Hehn A, Fritsch C, Richards KE, Guilley H, Jonard G (1997) Evidence for in vitro and in vivo autocatalytic processing of the primary translation product of beet necrotic yellow vein virus RNA1 by a papain-like proteinase. Arch Virol 142:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Heijbroek W, Musters PMS, Schoone AHL (1999) Variation in pathogenicity and multiplication of beet necrotic yellow vein virus (BNYVV) in relation to the resistance of sugar beet cultivars. Eur J Plant Pathol 105:397–405

    Article  Google Scholar 

  • Heinlein M (2015a) Plant virus replication and movement. Virology 479–480:657–671

    Article  PubMed  Google Scholar 

  • Heinlein M (2015b) Plasmodesmata: channels for viruses on the move. Methods Mol Biol 1217:25–52

    Article  CAS  PubMed  Google Scholar 

  • Jaag HM, Nagy PD (2009) Silencing of Nicotiana benthamiana Xrn4p exoribonuclease promotes tombusvirus RNA accumulation and recombination. Virology 386:344–352

    Article  CAS  PubMed  Google Scholar 

  • Jackson AO, Lim HS, Bragg J, Ganesan U, Lee MY (2009) Hordeivirus replication, movement, and pathogenesis. Annu Rev Phytopathol 47:385–422

    Article  CAS  PubMed  Google Scholar 

  • Jupin I, Richards K, Jonard G, Guilley H, Pleij CW (1990) Mapping sequences required for productive replication of beet necrotic yellow vein virus RNA 3. Virology 178:273–280

    Article  CAS  PubMed  Google Scholar 

  • Jupin I, Guilley H, Richards KE, Jonard G (1992) Two proteins encoded by beet necrotic yellow vein virus RNA 3 influence symptom phenotype on leaves. EMBO J 11:479–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein E, Link D, Schirmer A, Erhardt M, Gilmer D (2007) Sequence variation within beet necrotic yellow vein virus p25 protein influences its oligomerization and isolate pathogenicity on Tetragonia expansa. Virus Res 126:53–61

    Article  CAS  PubMed  Google Scholar 

  • Koenig R, Jarausch W, Li Y, Commandeur U, Burgermeister W, Gehrke M, Luddecke P (1991) Effect of recombinant beet necrotic yellow vein virus with different RNA compositions on mechanically inoculated sugar beets. J Gen Virol 72:2243–2246

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV, Dolja VV (1993) Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Crit Rev Biochem Mol Biol 28:375–430

    Article  CAS  PubMed  Google Scholar 

  • Larson RL, Wintermantel WM, Hill A, Fortis L, Nunez A (2008) Proteome changes in sugar beet in response to beet necrotic yellow vein virus. Physiol Mol Plant Pathol 72:62–72

    Article  CAS  Google Scholar 

  • Lauber E, Guilley H, Richards K, Jonard G, Gilmer D (1997) Conformation of the 3′-end of beet necrotic yellow vein benyvirus RNA3 analysed by chemical and enzymatic probing and mutagenesis. Nucleic Acids Res 25:4723–4729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauber E, Bleykasten-Grosshans C, Erhardt M, Bouzoubaa S, Jonard G, Richards KE, Guilley H (1998a) Cell-to-cell movement of beet necrotic yellow vein virus: I. Heterologous complementation experiments provide evidence for specific interactions among the triple gene block proteins. Mol Plant-Microbe Interact 11:618–625

    Article  CAS  PubMed  Google Scholar 

  • Lauber E, Guilley H, Tamada T, Richards KE, Jonard G (1998b) Vascular movement of beet necrotic yellow vein virus in Beta macrocarpa is probably dependent on an RNA3 sequence domain rather than a gene product. J Gen Virol 79:385–393

    Article  CAS  PubMed  Google Scholar 

  • Lauber E, Jonard G, Guilley H, Gilmer D (1999) Effects of structural modifications upon the accumulation in planta of replicons derived from beet necrotic yellow vein virus RNA 3. Arch Virol 144:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Lauber E, Janssens L, Weyens G, Jonard G, Richards KE, Lefebvre M, Guilley H (2001) Rapid screening for dominant negative mutations in the beet necrotic yellow vein virus triple gene block proteins P13 and P15 using a viral replicon. Transgenic Res 10:293–302

    Article  CAS  PubMed  Google Scholar 

  • Lauber E, Jonard G, Richards K, Guilley H (2005) Nonregulated expression of TGBp3 of hordei-like viruses but not of potex-like viruses inhibits beet necrotic yellow vein virus cell-to-cell movement. Arch Virol 150:1459–1467

    Article  CAS  PubMed  Google Scholar 

  • Link D, Schmidlin L, Schirmer A, Klein E, Erhardt M, Geldreich A, Lemaire O, Gilmer D (2005) Functional characterization of the beet necrotic yellow vein virus RNA-5-encoded p26 protein: evidence for structural pathogenicity determinants. J Gen Virol 86:2115–2125

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ (2006) Plant viral movement proteins: agents for cell-to-cell trafficking of viral genomes. Virology 344:169–184

    Article  CAS  PubMed  Google Scholar 

  • Michael T, Wilson A (1984) Cotranslational disassembly increases the efficiency of expression of TMV RNA in wheat germ cell-free extracts. Virology 138:353–356

    Article  CAS  PubMed  Google Scholar 

  • Morozov SY, Solovyev AG (2003) Triple gene block: modular design of a multifunctional machine for plant virus movement. J Gen Virol 84:1351–1366

    Article  CAS  PubMed  Google Scholar 

  • Niesbach-Klosgen U, Guilley H, Jonard G, Richards K (1990) Immunodetection in vivo of beet necrotic yellow vein virus-encoded proteins. Virology 178:52–61

    Article  CAS  PubMed  Google Scholar 

  • Pakdel A, Mounier C, Klein E, Hleibieh K, Monsion B, Mutterer J, Erhardt M, Bouzoubaa S, Ratti C, Gilmer D (2015) On the interaction and localization of the beet necrotic yellow vein virus replicase. Virus Res 196:94–104

    Article  CAS  PubMed  Google Scholar 

  • Peltier C, Schmidlin L, Klein E, Taconnat L, Prinsen E, Erhardt M, Heintz D, Weyens G, Lefebvre M, Renou JP, Gilmer D (2011) Expression of the beet necrotic yellow vein virus p25 protein induces hormonal changes and a root branching phenotype in Arabidopsis thaliana. Transgenic Res 20:443–466

    Article  CAS  PubMed  Google Scholar 

  • Peltier C, Klein E, Hleibieh K, D’Alonzo M, Hammann P, Bouzoubaa S, Ratti C, Gilmer D (2012) beet necrotic yellow vein virus subgenomic RNA3 is a cleavage product leading to stable non-coding RNA required for long-distance movement. J Gen Virol 93:1093–1102

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Yang J, Yan F, Lu Y, Jiang S, Lin L, Zheng H, Chen H, Chen J (2011) Silencing of NbXrn4 facilitates the systemic infection of tobacco mosaic virus in Nicotiana benthamiana. Virus Res 158:268–270

    Article  CAS  PubMed  Google Scholar 

  • Poch O, Sauvaget I, Delarue M, Tordo N (1989) Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8:3867–3874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pogue GP, Hall TC (1992) The requirement for a 5′ stem-loop structure in brome mosaic virus replication supports a new model for viral positive-strand RNA initiation. J Virol 66:674–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Priano C, Arora R, Jayant L, Mills DR (1997) Translational activation in coliphage Qbeta: on a polycistronic messenger RNA, repression of one gene can activate translation of another. J Mol Biol 271:299–310

    Article  CAS  PubMed  Google Scholar 

  • Quillet L, Guilley H, Jonard G, Richards K (1989) In vitro synthesis of biologically active beet necrotic yellow vein virus RNA. Virology 172:293–301

    Article  CAS  PubMed  Google Scholar 

  • Rahim MD, Andika IB, Han C, Kondo H, Tamada T (2007) RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. J Gen Virol 88:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Ratti C, Hleibieh K, Bianchi L, Schirmer A, Autonell CR, Gilmer D (2009) Beet soil-borne mosaic virus RNA-3 is replicated and encapsidated in the presence of BNYVV RNA-1 and -2 and allows long distance movement in Beta macrocarpa. Virology 385:392–399

    Article  CAS  PubMed  Google Scholar 

  • Romero-Brey I, Bartenschlager R (2014) Membranous replication factories induced by plus-strand RNA viruses. Viruses 6:2826–2857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakata M, Otsuki N, Okamoto K, Anraku M, Nagai M, Takeda M, Mori Y (2014) Short self-interacting N-terminal region of rubella virus capsid protein is essential for cooperative actions of capsid and nonstructural p150 proteins. J Virol 88:11187–11198

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidlin L, Link D, Mutterer J, Guilley H, Gilmer D (2005) Use of a beet necrotic yellow vein virus RNA-5-derived replicon as a new tool for gene expression. J Gen Virol 86:463–467

    Article  CAS  PubMed  Google Scholar 

  • Schmidlin L, De Bruyne E, Weyens G, Lefebvre M, Gilmer D (2008) Identification of differentially expressed root genes upon rhizomania disease. Mol Plant Pathol 9:741–751

    Article  CAS  PubMed  Google Scholar 

  • Schmitt C, Balmori E, Jonard G, Richards KE, Guilley H (1992) In vitro mutagenesis of biologically active transcripts of beet necrotic yellow vein virus RNA2: evidence that a domain of the 75-kDa readthrough protein is important for efficient virus assembly. Proc Natl Acad Sci USA 89:5715–5719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamada T, Abe H (1989) Evidence that beet necrotic yellow vein virus RNA-4 is essential for transmission by the fungus Polymyxa betae. J Gen Virol 70:3391–3398

    Article  CAS  Google Scholar 

  • Tamada T, Kusume T (1991) Evidence that the 75K readthrough protein of beet necrotic yellow vein virus RNA-2 is essential for transmission by the fungus Polymyxa betae. J Gen Virol 72:1497–1504

    Article  CAS  PubMed  Google Scholar 

  • Tamada T, Shirako Y, Abe H, Saito M, Kigushi T, Harada T (1989) Production and pathogenicity of isolates of beet necrotic yellow vein virus with different numbers of RNA components. J Gen Virol 70:3399–3409

    Article  CAS  Google Scholar 

  • Tamada T, Kusume T, Uchino H, Kigushi T, Saito M (1996a) Evidence that beet necrotic yellow vein virus RNA-5 is involved in symptom development of sugar beet roots. In: Sherwood JL, Rush CM (eds) Proceedings of the 3rd Symposium IWGPVFV, Dundee UK, pp 49–52

    Google Scholar 

  • Tamada T, Schmitt C, Saito M, Guilley H, Richards K, Jonard G (1996b) High resolution analysis of the readthrough domain of beet necrotic yellow vein virus readthrough protein: a KTER motif is important for efficient transmission of the virus by Polymyxa betae. J Gen Virol 77:1359–1367

    Google Scholar 

  • Tamada T, Uchino H, Kusume T, Saito M (1999) RNA 3 Deletion mutants of beet necrotic yellow vein virus do not cause rhizomania disease in sugar beets. Phytopathology 89:1000–1006

    Article  CAS  PubMed  Google Scholar 

  • Thiel H, Varrelmann M (2009) Identification of beet necrotic yellow vein virus P25 pathogenicity factor-interacting sugar beet proteins that represent putative virus targets or components of plant resistance. Mol Plant-Microbe Interact 22:999–1010

    Article  CAS  PubMed  Google Scholar 

  • Thiel H, Hleibieh K, Gilmer D, Varrelmann M (2012) The P25 pathogenicity factor of beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein. Mol Plant-Microbe Interact 25:1058–1072

    Article  CAS  PubMed  Google Scholar 

  • Thompson JR, Buratti E, de Wispelaere M, Tepfer M (2008) Structural and functional characterization of the 5′ region of subgenomic RNA5 of cucumber mosaic virus. J Gen Virol 89:1729–1738

    Article  CAS  PubMed  Google Scholar 

  • Valentin C, Dunoyer P, Vetter G, Schalk C, Dietrich A, Bouzoubaa S (2005) Molecular basis for mitochondrial localization of viral particles during beet necrotic yellow vein virus infection. J Virol 79:9991–10002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Lent JM, Schmitt-Keichinger C (2006) Viral movement proteins induce tubule formation in plant and insect cells. In: Cell-cell channels. Springer, New York USA, pp 160–175

    Google Scholar 

  • Verchot-Lubicz J, Rush C, Payton M, Colberg T (2007) Beet necrotic yellow vein virus accumulates inside resting spores and zoosporangia of its vector Polymyxa betae BNYVV infects P. betae. Virol J 4:37

    Article  Google Scholar 

  • Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D (2010) Varied movement strategies employed by triple gene block-encoding viruses. Mol Plant-Microbe Interact 23:1231–1247

    Article  CAS  PubMed  Google Scholar 

  • Wilson TM (1984) Cotranslational disassembly of tobacco mosaic virus in vitro. Virology 137:255–265

    Article  CAS  PubMed  Google Scholar 

  • Wu WQ, Fan HY, Jiang N, Wang Y, Zhang ZY, Zhang YL, Wang XB, Li DW, Yu JL, Han CG (2014) Infection of beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol J 11:118

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler V, Richards K, Guilley H, Jonard G, Putz C (1985) Cell-free translation of beet necrotic yellow vein virus: readthrough of the coat protein cistron. J Gen Virol 66:2079–2087

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank current and past members of my team, worldwide collaborators for the generous discussions and brainstorming, and Dr. Todd Blevins for his help in language editing. A special acknowledgment is reserved for my mentor Prof. Gérard Jonard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gilmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gilmer, D. (2016). Molecular Biology and Replication of Beet Necrotic Yellow Vein Virus. In: Biancardi, E., Tamada, T. (eds) Rhizomania. Springer, Cham. https://doi.org/10.1007/978-3-319-30678-0_4

Download citation

Publish with us

Policies and ethics