Skip to main content

Engineering Transgenic Rhizomania Resistance

  • Chapter
  • First Online:
Rhizomania

Abstract

The only practical means to ensure viability and profitability of the sugar beet crop is to provide efficient protection against rhizomania, caused by beet necrotic yellow vein virus (BNYVV), through the use of varieties, specifically bred as resistant to the disease. Although breeding ingenuity has to date achieved successful control of the disease throughout the world, resistant varieties may still suffer significant losses. At the same time, evolutionary changes in the pathogen continuously pose new challenges and require adjustments in relevant breeding programs if they were to keep providing a durable crop protection through the use of better resisting varieties. Given the fact that acquiring resistance from the repertoire of the crops’ gene pool is delimited by the scarcity of natural genetic sources of resistance to BNYVV, transgenesis offers the possibility to broaden the options for rhizomania resistance. Initial attempts to generate transgenic rhizomania resistance were based on the pathogen-derived resistance (PDR) concept. Recent understanding of the aspects underlying the antiviral pathways of RNA silencing however, has placed the focus of interest on generating rhizomania resistance based on the exploitation of the discovered innate defense mechanism. Alternative resistance strategies involved the employment of genes originating from nonviral sources. This chapter reviews the latest advances in breeding for rhizomania resistance in transgenic sugar beet plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel PP, Nelson RS, De B, Hoffmann N, Rogen SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Leal R, Rush CM (2007) Mutations associated with resistance-breaking isolates of beet necrotic yellow vein virus and their allelic discrimination using TaqMan technology. Phytopathology 97:325–330

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Leal R, Fawley MW, Rush CM (2008) Changes in the intraisolate genetic structure of beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology 376:60–68

    Article  CAS  PubMed  Google Scholar 

  • Acosta-Leal R, Bryan BK, Rush CM (2010a) Host effect on the genetic diversification of beet necrotic yellow vein virus single-plant populations. Phytopathology 100:1204–1212

    Article  PubMed  Google Scholar 

  • Acosta-Leal R, Bryan BK, Smith JT, Rush CM (2010b) Breakdown of host resistance by independent evolutionary lineages of beet necrotic yellow vein virus involves a parallel C/U mutation in its p25 gene. Phytopathology 100:127–133

    Article  CAS  PubMed  Google Scholar 

  • Agius C, Eamens AL, Millar AA, Watson JM, Wang MB (2012) RNA silencing and antiviral defense in plants. Methods Mol Biol 894:17–38

    Article  CAS  PubMed  Google Scholar 

  • Andika IB, Kondo H, Tamada T (2005) Evidence that RNA silencing-mediated resistance to beet necrotic yellow vein virus is less effective in roots than in leaves. Mol Plant-Microbe Interact 18:194–204

    Article  CAS  PubMed  Google Scholar 

  • Baulcombe D (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe D (1999) Viruses and gene silencing in plants. Arch Virol Suppl 15:189–201

    CAS  PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  • Beachy RN, Loesch-Fries S, Tumer TE (1990) Coat protein-mediated resistance against virus infection. Ann Rev Phytopathol 28:4451–4474

    Article  Google Scholar 

  • Biancardi E, Lewellen RT, De Biaggi M, Erichsen AW, Stevanato P (2002) The origin of rhizomania resistance in sugar beet. Euphytica 127:383–397

    Article  CAS  Google Scholar 

  • Bleykasten-Grosshans C, Guilley H, Bouzoubaa S, Richards KE, Jonard G (1997) Independent expression of the first two triple gene block proteins of beet necrotic yellow vein virus complements virus defective in the corresponding gene but expression of the third protein inhibits viral cell-to-cell movement. Mol Plant Microbe Interact 10:240–246

    Article  CAS  Google Scholar 

  • Casarini B (1999) Le avversitĂ : loro natura, prevenzione e lotta. In: Casarini B, Biancardi E, Ranalli P (eds) La barbabietola negli ambienti mediterranei. Edagricole, Bologna Italy, pp 273–421

    Google Scholar 

  • Chiba S, Miyanishi M, Andica IB, Kondo H, Tamada T (2008) Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. J Gen Virol 89:1314–1323

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T (2011) The evolutionary history of beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. Mol Plant-Microbe Interact 24:207–218

    Article  CAS  PubMed  Google Scholar 

  • Chuang C-F, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SW (2010) RNA-based antiviral immunity. Nat Rev Immunol 10:632–644

    Article  CAS  PubMed  Google Scholar 

  • Ding S, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eamens A, Wang M-B, Smith NA, Waterhouse PM (2008) RNA Silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehlers U, Commandeur U, Frank R, Landsmann J, Koenig R, Burgermeister W (1991) Cloning of the coat protein gene from beet necrotic yellow vein virus and its expression in sugar beet hairy roots. Theor Appl Genet 81:777–782

    Article  CAS  PubMed  Google Scholar 

  • Fecker LF, Koenig R, Obermeier C (1997) Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Arch Virol 142:1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Arenal F, McDonald BA (2003) An analysis of the durability of resistance to plant viruses. Phytopathology 93:941–952

    Article  PubMed  Google Scholar 

  • Goldbach R, Bucher E, Prins M (2003) Resistance mechanisms to plant viruses: an overview. Virus Res 92:207–212

    Article  CAS  PubMed  Google Scholar 

  • Hamilton AJ, Brown S, Yuanhai H, Ishizuka M, Lowe A, Solis AGA, Grierson D (1998) A transgene with repeat DNA causes high frequency, post-transcriptional suppression of ACC-oxidase gene expression in tomato. Plant J 15:737–746

    Article  CAS  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    Article  CAS  PubMed  Google Scholar 

  • Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    Article  CAS  PubMed  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126:930–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson E (1985) Rhizomania in sugar beet - a threat to beet growing that can be overcome by plant breeding. Sveriges Utsädesförenings Tidskrift 95:115–121

    Google Scholar 

  • Kallerhoff J, Pascual P, Bouzoubaa S, Tahar SB, Perret J (1990) Beet necrotic yellow vein virus coat protein-mediated protection in sugar beet (Beta vulgaris L.) protoplasts. Plant Cell Rep 9:224–228

    Article  CAS  PubMed  Google Scholar 

  • Koenig R, Loss S, Specht J, Varrelmann M, Luddecke P, Deml G (2009) A single U/C nucleotide substitution changing alanine to valine in the beet necrotic yellow vein virus p25 protein promotes increased virus accumulation in roots of mechanically inoculated, partially resistant sugar beet seedlings. J Gen Virol 90:759–763

    Article  CAS  PubMed  Google Scholar 

  • Lennefors BL, Savenkov EI, Bensefelt J, Wremerth-Weich E, van Roggen P, Tuvesson S, Valkonen JPT, Gielen J (2006) dsRNA-mediated resistance to beet necrotic yellow vein virus infections in sugar beet (Beta vulgaris L. ssp. vulgaris). Mol Breed 18:313–325

    Article  CAS  Google Scholar 

  • Lennefors B-L, van Roggen PM, Yndgaard F, Savenkov EI, Valkonen JPT (2008) Efficient dsRNA-mediated transgenic resistance to beet necrotic yellow vein virus in sugar beets is not affected by other soil-borne and aphid-transmitted viruses. Transgenic Res 17:219–228

    Article  CAS  PubMed  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu HY, Lewellen RT (2007) Distribution and molecular characterisation of resistance breaking isolates of beet necrotic yellow vein virus in the United States. Plant Dis 91:847–851

    Article  CAS  Google Scholar 

  • Mannerlöf M, Lennefors B-L, Tenning P (1996) Reduced titer of BNYVV in transgenic sugar beets expressing the BNYVV coat protein. Euphytica 90:293–296

    Article  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavli OI, Panopoulos NJ, Goldbach R, Skaracis GN (2010) BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach. Transgenic Res 19:915–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN (2011a) The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS One 6:e17306. doi:10.1371/journal.pone.0017306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavli OI, Prins M, Goldbach R, Skaracis GN (2011b) Efficiency of Rz1-based rhizomania resistance and molecular studies on BNYVV isolates from sugar beet cultivation in Greece. Eur J Plant Pathol 130:133–142

    Article  CAS  Google Scholar 

  • Pavli OI, Tampakaki A, Skaracis GN (2012) High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS One 7:e51414. doi:10.1371/journal.pone.0051414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pferdmenges F, Varrelmann M (2009) Breaking of beet necrotic yellow vein virus resistance in sugar beet is independent of virus and vector inoculum densities. Eur J Plant Pathol 124:231–245

    Article  Google Scholar 

  • Pferdmenges F, Korf H, Varrelmann M (2009) Identification of rhizomania-infected soil in Europe able to overcome Rz1 resistance in sugar beet and comparison with other resistance-breaking soils from different geographic origins. Eur J Plant Pathol 124:31–43

    Article  Google Scholar 

  • Prins M, Goldbach R (1996) RNA-mediated virus resistance in transgenic plants. Arch Virol 141:2259–2276

    Article  CAS  PubMed  Google Scholar 

  • Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  • Roossinck MJ (1997) Mechanisms of plant virus evolution. Annu Rev Phytopathol 35:191–209

    Article  CAS  PubMed  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of pathogen derived resistance. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Schirmer A, Link D, Cognat V, Moury B, Beuve M, Meunier A, Bragard C, Gilmer D, Lemaire O (2005) Phylogenetic analysis of isolates of beet necrotic yellow vein virus collected worldwide. J Gen Virol 86:2897–2911

    Article  CAS  PubMed  Google Scholar 

  • Tenllado F, Llave C, DĂ­az-RuĂ­z JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    Article  CAS  PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JN, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez RC, del Vas M, Hopp HE (2002) RNA-mediated virus resistance. Curr Opin Biotechnol 13:167–172

    Article  Google Scholar 

  • Voinnet O (2001) RNA silencing as plant immune system against viruses. Trends Genet 17:449–459

    Article  CAS  PubMed  Google Scholar 

  • Voinnet O (2008) Post-transcriptional RNA silencing in plant-microbe interactions: a touch of robustness and versatility. Curr Opin Plant Biol 11:464–470

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse PM, Gramham M, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Zare B, Niazi A, Sattari R, Aghelpasand H, Zamani K, Sabet MS, Moshiri F, Darabie S, Daneshvar MH, Norouzi P, Kazemi-Tabar SK, Khoshnami M, Malboobi MA (2015) Resistance against rhizomania disease via RNA silencing in sugar beet. Plant Pathol 64:35–42

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ourania I. Pavli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pavli, O.I., Skaracis, G.N. (2016). Engineering Transgenic Rhizomania Resistance. In: Biancardi, E., Tamada, T. (eds) Rhizomania. Springer, Cham. https://doi.org/10.1007/978-3-319-30678-0_10

Download citation

Publish with us

Policies and ethics