Skip to main content

Implicit Look-Alike Modelling in Display Ads

Transfer Collaborative Filtering to CTR Estimation

  • Conference paper
Advances in Information Retrieval (ECIR 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9626))

Included in the following conference series:

Abstract

User behaviour targeting is essential in online advertising. Compared with sponsored search keyword targeting and contextual advertising page content targeting, user behaviour targeting builds users’ interest profiles via tracking their online behaviour and then delivers the relevant ads according to each user’s interest, which leads to higher targeting accuracy and thus more improved advertising performance. The current user profiling methods include building keywords and topic tags or mapping users onto a hierarchical taxonomy. However, to our knowledge, there is no previous work that explicitly investigates the user online visits similarity and incorporates such similarity into their ad response prediction. In this work, we propose a general framework which learns the user profiles based on their online browsing behaviour, and transfers the learned knowledge onto prediction of their ad response. Technically, we propose a transfer learning model based on the probabilistic latent factor graphic models, where the users’ ad response profiles are generated from their online browsing profiles. The large-scale experiments based on real-world data demonstrate significant improvement of our solution over some strong baselines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the features studied in our work are one-hot encoded binary features.

  2. 2.

    It is common to perform negative down sampling to balance the labels in ad CTR estimation [9]. Calibration methods [3] are then leveraged to eliminate the model bias.

References

  1. Ahmed, A., Low, Y., Aly, M., Josifovski, V., Smola, A.J.: Scalable distributed inference of dynamic user interests for behavioral targeting. In: KDD (2011)

    Google Scholar 

  2. Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual advertising. In: SIGIR, pp. 559–566. ACM (2007)

    Google Scholar 

  3. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: ICML, pp. 161–168. ACM (2006)

    Google Scholar 

  4. Chapelle, O.: Modeling delayed feedback in display advertising. In: KDD, pp. 1097–1105. ACM (2014)

    Google Scholar 

  5. Chapelle, O., et al.: A simple and scalable response prediction for display advertising. ACM Trans. Intell. Syst. Technol. (TIST) 5(4), 61 (2013)

    MathSciNet  Google Scholar 

  6. Dai, W., Xue, G.R., Yang, Q., Yu, Y.: Transferring naive bayes classifiers for text classification. In: AAAI (2007)

    Google Scholar 

  7. Dalessandro, B., Chen, D., Raeder, T., Perlich, C., Han Williams, M., Provost, F.: Scalable hands-free transfer learning for online advertising. In: KDD (2014)

    Google Scholar 

  8. Graepel, T., Candela, J.Q., Borchert, T., Herbrich, R.: Web-scale bayesian click-through rate prediction for sponsored search advertising in microsoft’s bing search engine. In: ICML, pp. 13–20 (2010)

    Google Scholar 

  9. He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich, R., Bowers, S., et al.: Practical lessons from predicting clicks on ads at facebook. In: ADKDD, pp. 1–9. ACM(2014)

    Google Scholar 

  10. Hofmann, T.: Collaborative filtering via gaussian probabilistic latent semantic analysis. In: SIGIR, pp. 259–266. ACM (2003)

    Google Scholar 

  11. Jebara, T.: Machine Learning: Discriminative and Generative, vol. 755. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  12. Juan, Y.C., Zhuang, Y., Chin, W.S.: 3 Idiots Approach for Display Advertising Challenge. Internet and Network Economics, pp. 254–265. Springer, Heidelberg (2011)

    Google Scholar 

  13. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Comput. 8, 30–37 (2009)

    Article  Google Scholar 

  14. Lee, K., Orten, B., Dasdan, A., Li, W.: Estimating conversion rate in display advertising from past performance data. In: KDD, pp. 768–776. ACM (2012)

    Google Scholar 

  15. Li, B., Yang, Q., Xue, X.: Transfer learning for collaborative filtering via a rating-matrix generative model. In: ICML, pp. 617–624. ACM (2009)

    Google Scholar 

  16. Liao, X., Xue, Y., Carin, L.: Logistic regression with an auxiliary data source. In: ICML, pp. 505–512. ACM (2005)

    Google Scholar 

  17. Mangalampalli, A., Ratnaparkhi, A., Hatch, A.O., Bagherjeiran, A., Parekh, R., Pudi, V.: A feature-pair-based associative classification approach to look-alike modeling for conversion-oriented user-targeting in tail campaigns. In: WWW, pp. 85–86. ACM (2011)

    Google Scholar 

  18. McAfee, R.P.: The design of advertising exchanges. Rev. Ind. Organ. 39(3), 169–185 (2011)

    Article  MathSciNet  Google Scholar 

  19. Muthukrishnan, S.: Ad exchanges: research issues. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 1–12. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Oentaryo, R.J., Lim, E.P., Low, D.J.W., Lo, D., Finegold, M.: Predicting response in mobile advertising with hierarchical importance-aware factorization machine. In: WSDM (2014)

    Google Scholar 

  21. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  22. PricewaterhouseCoopers: IAB internet advertising revenue report (2014). Accessed 29 July 2015. http://www.iab.net/media/file/PwC_IAB_Webinar_Presentation_HY2014.pdf

  23. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000. IEEE (2010)

    Google Scholar 

  24. Richardson, M., Dominowska, E., Ragno, R.: Predicting clicks: estimating the click-through rate for new ads. In: WWW, pp. 521–530. ACM (2007)

    Google Scholar 

  25. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295. ACM (2001)

    Google Scholar 

  26. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Wang, J., De Vries, A.P., Reinders, M.J.: Unifying user-based and item-based collaborative filtering approaches by similarity fusion. In: SIGIR (2006)

    Google Scholar 

  29. Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y., Chen, Z.: How much can behavioral targeting help online advertising?. In: WWW, pp. 261–270. ACM (2009)

    Google Scholar 

  30. Yan, L., Li, W.J., Xue, G.R., Han, D.: Coupled group lasso for web-scale ctr prediction in display advertising. In: ICML, pp. 802–810 (2014)

    Google Scholar 

  31. Yuan, S., Wang, J., Zhao, X.: Real-time bidding for online advertising: measurement and analysis. In: ADKDD, pp. 3. ACM (2013)

    Google Scholar 

  32. Zhang, W., Yuan, S., Wang, J.: Real-time bidding benchmarking with ipinyou dataset. arXiv preprint.(2014). arxiv:1407.7073

Download references

Acknowledgement

We would like to thank Adform for allowing us to use their data in experiments. We would also like to thank Thomas Furmston for his feedback on the paper. Weinan thanks Chinese Scholarship Council for the research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weinan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, W., Chen, L., Wang, J. (2016). Implicit Look-Alike Modelling in Display Ads. In: Ferro, N., et al. Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science(), vol 9626. Springer, Cham. https://doi.org/10.1007/978-3-319-30671-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30671-1_43

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30670-4

  • Online ISBN: 978-3-319-30671-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics