Advertisement

Geometric Semantic Genetic Programming Is Overkill

  • Tomasz P. PawlakEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9594)

Abstract

Recently, a new notion of Geometric Semantic Genetic Programming emerged in the field of automatic program induction from examples. Given that the induction problem is stated by means of function learning and a fitness function is a metric, GSGP uses geometry of solution space to search for the optimal program. We demonstrate that a program constructed by GSGP is indeed a linear combination of random parts. We also show that this type of program can be constructed in a predetermined time by much simpler algorithm and with guarantee of solving the induction problem optimally. We experimentally compare the proposed algorithm to GSGP on a set of symbolic regression, Boolean function synthesis and classifier induction problems. The proposed algorithm is superior to GSGP in terms of training-set fitness, size of produced programs and computational cost, and generalizes on test-set similarly to GSGP.

Keywords

Automatic program induction Geometric semantic genetic programming Solution space 

Notes

Acknowledgements

This work is funded by National Science Centre Poland grant number DEC-2012/07/N/ST6/03066.

References

  1. 1.
    Burden, R., Faires, J.: Numerical Analysis. Cengage Learning (2010). http://books.google.pl/books?id=Dbw8AAAAQBAJ
  2. 2.
    Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., Maccagnola, D.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 78–89. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Castelli, M., Henriques, R., Vanneschi, L.: A geometric semantic genetic programming system for the electoral redistricting problem. Neurocomputing 154, 200–207 (2015). http://www.sciencedirect.com/science/article/pii/S0925231214016671 CrossRefGoogle Scholar
  4. 4.
    Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013). http://www.sciencedirect.com/science/article/pii/S0957417413004326 CrossRefGoogle Scholar
  5. 5.
    Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 243–320 (1990)Google Scholar
  6. 6.
    Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, New York (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Statistics and Computing. Springer, New York (1998). http://opac.inria.fr/record=b1098288 CrossRefzbMATHGoogle Scholar
  8. 8.
    Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. Am. Inst. Electr. Eng. Part I: Commun. Electron. 72(5), 593–599 (1953)MathSciNetGoogle Scholar
  9. 9.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992). http://mitpress.mit.edu/books/genetic-programming zbMATHGoogle Scholar
  10. 10.
    Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Raidl, G., et al. (eds.) Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO 2009, pp. 987–994. ACM, Montreal, 8–12 July 2009Google Scholar
  11. 11.
    Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genet. Program. Evolvable Mach. 14(1), 31–63 (2013)CrossRefGoogle Scholar
  12. 12.
    Luke, S.: The ECJ Owner’s Manual - A User Manual for the ECJ Evolutionary Computation Library, zeroth edition, online version 0.2 (edn.), October 2010. http://cs.gmu.edu/eclab/projects/ecj/docs/
  13. 13.
    Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 43, 570–577 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation, pp. 235–260. Springer, New York (2011). http://trent.st/content/2011-GPTP-FFX-paper.pdf CrossRefGoogle Scholar
  15. 15.
    McDermott, J., Agapitos, A., Brabazon, A., O’Neill, M.: Geometric semantic genetic programmingfor financial data. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 215–226. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    McDermott, J., et al.: Genetic programming needs better benchmarks. In: Soule, T., et al. (eds.) Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference. GECCO 2012, pp. 791–798. ACM, Philadelphia, Pennsylvania, USA, 7–11 July 2012Google Scholar
  17. 17.
    Moraglio, A.: Abstract convex evolutionary search. In: Beyer, H.G., Langdon, W.B. (eds.) Foundations of Genetic Algorithms, pp. 151–162. ACM, Schwarzenberg, Austria, 5–9 January 2011Google Scholar
  18. 18.
    Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric semantic genetic programming for basis functions regression. In: Blum, C., et al. (eds.) Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference. GECCO 2013, pp. 989–996. ACM, Amsterdam, The Netherlands, 6–10 July 2013Google Scholar
  20. 20.
    Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions. In: Neumann, F., De Jong, K. (eds.) Foundations of Genetic Algorithms, pp. 119–132. ACM, Adelaide, Australia, 16–20 January 2013. http://www.cs.bham.ac.uk/axm322/pdf/gsgp_foga13.pdf
  21. 21.
    Moraglio, A., Sudholt, D.: Runtime analysis of convex evolutionary search. In: Soule, T., Moore, J.H. (eds.) GECCO, pp. 649–656. ACM (2012). http://dblp.uni-trier.de/db/conf/gecco/gecco2012.html#MoraglioS12
  22. 22.
    Nguyen, Q.U., Pham, T.A., Nguyen, X.H., McDermott, J.: Subtree semantic geometric crossover for genetic programming. Genet. Program. Evolvable Mach., 1–29. Online firstGoogle Scholar
  23. 23.
    Pawlak, T.P.: Combining semantically-effective and geometric crossover operators for genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 454–464. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Pawlak, T.P.: Competent Algorithms for Geometric Semantic Genetic Programming. Ph.D. thesis, Poznan University of Technology, Poznan, Poland, 21 September 2015. http://www.cs.put.poznan.pl/tpawlak/link/?PhD
  25. 25.
    Pawlak, T.P., Krawiec, K.: Progress properties and fitness bounds for geometric semantic search operators. Genet. Program. Evolvable Mach., 1–19. Online firstGoogle Scholar
  26. 26.
    Pawlak, T.P., Krawiec, K.: Guarantees of progress for geometric semantic genetic programming. In: Johnson, C., Krawiec, K., Moraglio, A., O’Neill, M. (eds.) Semantic Methods in Genetic Programming. Ljubljana, Slovenia 13 September 2014 (Workshop at Parallel Problem Solving from Nature 2014 Conference). http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Pawlak.pdf
  27. 27.
    Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386 (2015)CrossRefGoogle Scholar
  28. 28.
    Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2015). http://dx.doi.org/10.1109/TEVC.2014.2321259 CrossRefGoogle Scholar
  29. 29.
    Runge, C.: Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Z. Math. Phys. 46, 224–243 (1901)zbMATHGoogle Scholar
  30. 30.
    Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XI. Genetic and Evolutionary Computation, pp. 191–209. Springer, Heidelberg (2013)Google Scholar
  31. 31.
    Zhu, Z., Nandi, A.K., Aslam, M.W.: Adapted geometric semantic genetic programming for diabetes and breast cancer classification. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2013), September 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznańPoland

Personalised recommendations