Skip to main content

Geometric Semantic Genetic Programming Is Overkill

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9594))

Abstract

Recently, a new notion of Geometric Semantic Genetic Programming emerged in the field of automatic program induction from examples. Given that the induction problem is stated by means of function learning and a fitness function is a metric, GSGP uses geometry of solution space to search for the optimal program. We demonstrate that a program constructed by GSGP is indeed a linear combination of random parts. We also show that this type of program can be constructed in a predetermined time by much simpler algorithm and with guarantee of solving the induction problem optimally. We experimentally compare the proposed algorithm to GSGP on a set of symbolic regression, Boolean function synthesis and classifier induction problems. The proposed algorithm is superior to GSGP in terms of training-set fitness, size of produced programs and computational cost, and generalizes on test-set similarly to GSGP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    for two Booleans is equivalent to \(\vee \), for two classes outputs the one with lower id, for a class and outputs this class, otherwise . for two Booleans is equivalent to \(\wedge \), for two classes outputs the one with greater id, for 1 and a class outputs this class, otherwise . We omitted full tables of these functions for brevity.

  2. 2.

    The distinction between linear combination and interpolation is made to emphasize that linear combination is any weighted sum of programs, while interpolation is a weighted sum that goes through the certain points.

  3. 3.

    Points given by \(x_{k}=\frac{1}{2}(a+b)+\frac{1}{2}(b-a)\cos (\frac{2k-1}{2n}\pi ),k=1..n\), where [ab] is the range of training set, and n is number of data points. Using Chebyshev nodes minimizes the likelihood of Runge’s phenomenon [29].

References

  1. Burden, R., Faires, J.: Numerical Analysis. Cengage Learning (2010). http://books.google.pl/books?id=Dbw8AAAAQBAJ

  2. Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., Maccagnola, D.: An efficient implementation of geometric semantic genetic programming for anticoagulation level prediction in pharmacogenetics. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS, vol. 8154, pp. 78–89. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Castelli, M., Henriques, R., Vanneschi, L.: A geometric semantic genetic programming system for the electoral redistricting problem. Neurocomputing 154, 200–207 (2015). http://www.sciencedirect.com/science/article/pii/S0925231214016671

    Article  Google Scholar 

  4. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Expert Syst. Appl. 40(17), 6856–6862 (2013). http://www.sciencedirect.com/science/article/pii/S0957417413004326

    Article  Google Scholar 

  5. Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: Handbook of Theoretical Computer Science. Formal Models and Sematics, vol. B, pp. 243–320 (1990)

    Google Scholar 

  6. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, New York (2012)

    Book  MATH  Google Scholar 

  7. Gentle, J.E.: Numerical Linear Algebra for Applications in Statistics. Statistics and Computing. Springer, New York (1998). http://opac.inria.fr/record=b1098288

    Book  MATH  Google Scholar 

  8. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. Am. Inst. Electr. Eng. Part I: Commun. Electron. 72(5), 593–599 (1953)

    MathSciNet  Google Scholar 

  9. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992). http://mitpress.mit.edu/books/genetic-programming

    MATH  Google Scholar 

  10. Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Raidl, G., et al. (eds.) Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation. GECCO 2009, pp. 987–994. ACM, Montreal, 8–12 July 2009

    Google Scholar 

  11. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genet. Program. Evolvable Mach. 14(1), 31–63 (2013)

    Article  Google Scholar 

  12. Luke, S.: The ECJ Owner’s Manual - A User Manual for the ECJ Evolutionary Computation Library, zeroth edition, online version 0.2 (edn.), October 2010. http://cs.gmu.edu/eclab/projects/ecj/docs/

  13. Mangasarian, O.L., Street, W.N., Wolberg, W.H.: Breast cancer diagnosis and prognosis via linear programming. Oper. Res. 43, 570–577 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. McConaghy, T.: FFX: fast, scalable, deterministic symbolic regression technology. In: Riolo, R., Vladislavleva, E., Moore, J.H. (eds.) Genetic Programming Theory and Practice IX. Genetic and Evolutionary Computation, pp. 235–260. Springer, New York (2011). http://trent.st/content/2011-GPTP-FFX-paper.pdf

    Chapter  Google Scholar 

  15. McDermott, J., Agapitos, A., Brabazon, A., O’Neill, M.: Geometric semantic genetic programmingfor financial data. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 215–226. Springer, Heidelberg (2014)

    Google Scholar 

  16. McDermott, J., et al.: Genetic programming needs better benchmarks. In: Soule, T., et al. (eds.) Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference. GECCO 2012, pp. 791–798. ACM, Philadelphia, Pennsylvania, USA, 7–11 July 2012

    Google Scholar 

  17. Moraglio, A.: Abstract convex evolutionary search. In: Beyer, H.G., Langdon, W.B. (eds.) Foundations of Genetic Algorithms, pp. 151–162. ACM, Schwarzenberg, Austria, 5–9 January 2011

    Google Scholar 

  18. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric semantic genetic programming for basis functions regression. In: Blum, C., et al. (eds.) Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference. GECCO 2013, pp. 989–996. ACM, Amsterdam, The Netherlands, 6–10 July 2013

    Google Scholar 

  20. Moraglio, A., Mambrini, A., Manzoni, L.: Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions. In: Neumann, F., De Jong, K. (eds.) Foundations of Genetic Algorithms, pp. 119–132. ACM, Adelaide, Australia, 16–20 January 2013. http://www.cs.bham.ac.uk/axm322/pdf/gsgp_foga13.pdf

  21. Moraglio, A., Sudholt, D.: Runtime analysis of convex evolutionary search. In: Soule, T., Moore, J.H. (eds.) GECCO, pp. 649–656. ACM (2012). http://dblp.uni-trier.de/db/conf/gecco/gecco2012.html#MoraglioS12

  22. Nguyen, Q.U., Pham, T.A., Nguyen, X.H., McDermott, J.: Subtree semantic geometric crossover for genetic programming. Genet. Program. Evolvable Mach., 1–29. Online first

    Google Scholar 

  23. Pawlak, T.P.: Combining semantically-effective and geometric crossover operators for genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 454–464. Springer, Heidelberg (2014)

    Google Scholar 

  24. Pawlak, T.P.: Competent Algorithms for Geometric Semantic Genetic Programming. Ph.D. thesis, Poznan University of Technology, Poznan, Poland, 21 September 2015. http://www.cs.put.poznan.pl/tpawlak/link/?PhD

  25. Pawlak, T.P., Krawiec, K.: Progress properties and fitness bounds for geometric semantic search operators. Genet. Program. Evolvable Mach., 1–19. Online first

    Google Scholar 

  26. Pawlak, T.P., Krawiec, K.: Guarantees of progress for geometric semantic genetic programming. In: Johnson, C., Krawiec, K., Moraglio, A., O’Neill, M. (eds.) Semantic Methods in Genetic Programming. Ljubljana, Slovenia 13 September 2014 (Workshop at Parallel Problem Solving from Nature 2014 Conference). http://www.cs.put.poznan.pl/kkrawiec/smgp2014/uploads/Site/Pawlak.pdf

  27. Pawlak, T.P., Wieloch, B., Krawiec, K.: Review and comparative analysis of geometric semantic crossovers. Genet. Program. Evolvable Mach. 16(3), 351–386 (2015)

    Article  Google Scholar 

  28. Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing search operators in genetic programming. IEEE Trans. Evol. Comput. 19(3), 326–340 (2015). http://dx.doi.org/10.1109/TEVC.2014.2321259

    Article  Google Scholar 

  29. Runge, C.: Über empirische funktionen und die interpolation zwischen äquidistanten ordinaten. Z. Math. Phys. 46, 224–243 (1901)

    MATH  Google Scholar 

  30. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming for real life applications. In: Riolo, R., Moore, J.H., Kotanchek, M. (eds.) Genetic Programming Theory and Practice XI. Genetic and Evolutionary Computation, pp. 191–209. Springer, Heidelberg (2013)

    Google Scholar 

  31. Zhu, Z., Nandi, A.K., Aslam, M.W.: Adapted geometric semantic genetic programming for diabetes and breast cancer classification. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2013), September 2013

    Google Scholar 

Download references

Acknowledgements

This work is funded by National Science Centre Poland grant number DEC-2012/07/N/ST6/03066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz P. Pawlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Pawlak, T.P. (2016). Geometric Semantic Genetic Programming Is Overkill. In: Heywood, M., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds) Genetic Programming. EuroGP 2016. Lecture Notes in Computer Science(), vol 9594. Springer, Cham. https://doi.org/10.1007/978-3-319-30668-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30668-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30667-4

  • Online ISBN: 978-3-319-30668-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics