Skip to main content

Dispersion of Colloidal Suspensions and Their Stability

  • Chapter
  • First Online:
Suspensions of Colloidal Particles and Aggregates

Part of the book series: Particle Technology Series ((POTS,volume 20))

Abstract

Handling, use or characterisation of colloidal suspensions requires to adjust and preserve a certain state of dispersion. This typically means that agglomerates and aggregates are broken up into its constituent particles or at least into smallest possible fragments and that a subsequent reagglomeration is avoided. This chapter introduces principles and techniques of dispersion that are relevant for colloidal suspensions. Practical issues are discussed for the dispersion of pyrogenic powders. In addition, the chapter addresses the stability of colloidal suspensions with the focus being on the stability evaluation by analytical techniques. Since most commercial systems consist of multiple particulate components, the chapter finally discusses the stability of binary suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Liepe gives a value 0.15, but assumes that \(\tau_{\text{tv}} = \eta \dot{\gamma }_{{\upmu{\text{e}}}}\), which deviates from Eq. (5.6) for laminar shear.

  2. 2.

    It should be noted that McGown & Parfitt (1967) gave a modified definition of the stability ratio, in which the rate of aggregation is not related to that of non-interacting particles (Smoluchowski, Eq. (5.27) but to that of uncharged particles subject to attractive van-der-Waals forces. In this case, the stability ratio differs from factor W in Eq. (5.30).

References

Agglomerate Strength and Dispersion Mechanisms

  • J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H.P. Schuchmann, Deagglomeration processes in high-shear devices. Chem. Eng. Res. Des. 86(12), 1369–1381 (2008). doi:10.1016/j.cherd.2008.08.016

    Google Scholar 

  • J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H. P. Schuchmann, Agglomerate dispersion in cavitating flows. Chem. Eng. Res. Des. 87(4), 474–484 (2009). doi:10.1016/j.cherd.2008.12.015

    Google Scholar 

  • D.G. Bika, M. Gentzler, J.N. Michaels, Mechanical properties of agglomerates. Powder Technol. 117(1–2), 98–112 (2001). doi:10.1016/S0032-5910(01)00318-7

    Article  Google Scholar 

  • S. Blaser, Flocs in shear and strain flows. J. Colloid Interface Sci. 225(2), 273–284 (2000). doi: 10.1006/jcis.1999.6671

    Google Scholar 

  • S. Blaser, Forces on the surface of small ellipsoidal particles immersed in a linear flow field. Chem. Eng. Sci. 57(3), 515–526 (2002). doi:10.1016/S0009-2509(01)00389-X

    Article  Google Scholar 

  • F.P. Bowden, J.H. Brunton, The deformation of solids by liquid impact at supersonic speeds. Proc. R. Soc. London A 263(1315), 433–450 (1961). doi:10.1098/rspa.1961.0172

  • L.A. Crum, Cavitation microjets as a contributory mechanism for renal calculi disintegration in ESWL. J. Urol. 140(6), 1587–1590 (1988)

    Google Scholar 

  • S.J. Doktycz, K.S. Suslick, Interparticle collisions driven by ultrasound. Science 247(4946), 1067–1069 (1990). doi:10.1126/science.2309118

    Article  Google Scholar 

  • H.-J. Henzler, A. Biedermann, Modelluntersuchungen zur Partikelbeanspruchung in Reaktoren. Chem. Ing. Tech. 68(12), 1546–1561 (1996). doi:10.1002/cite.330681205

  • K. Higashitani, K. Iimura, H. Sanda, Simulation of deformation and breakupof large aggregates in flows of viscous fluids. Chem. Eng. Sci. 56(9), 2927–2938 (2001). doi:10.1016/S0009-2509(00)00477-2

    Article  Google Scholar 

  • G.B. Jeffery, The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. London A 102(715), 161–179 (1922). doi:10.1098/rspa.1922.0078

    Article  MATH  Google Scholar 

  • H. Karbstein, H. Schubert, Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Process. 34(3), 205–211 (1995). doi:10.1016/0255-2701(94)04005-2

    Google Scholar 

  • K. Kendall, N.M. Alford, J.D. Birchall, Elasticity of particle assemblies as a measure of the surface energy of solids. Proc. R. Soc. London A 412(1843), 269–283 (1987). doi:10.1098/rspa.1987.0089

    Google Scholar 

  • K. Kendall, Agglomerate strength. Powder Metall. 31(1), 28–31 (1988)

    Google Scholar 

  • M. Kobayashi, Breakup and strength of polystyrene latex flocs subjected to a converging flow. Colloids Surf. A 235(1–3), 73–78 (2004). doi:10.1016/j.colsurfa.2004.01.008

    Google Scholar 

  • A.N. Kolmogorov, Die lokale Struktur der Turbulenz in einer inkompressiblen zähen Flüssigkeit bei sehr großen Reynoldszahlen, in Sammelband zur statistischen Theorie der Turbulenz, eds. by A.N. Kolmogorov, H. Limberg, H. Goering (Akademie-Verlag, Berlin, 1958), pp. 71–76

    Google Scholar 

  • J. Krekel, Zerkleinerung von Agglomeraten in Scherströmungen mit besonders hoher Schubspannung. Chem. Ing. Tech. 38(3), 229–234 (1966). doi:10.1002/cite.330380307

    Article  Google Scholar 

  • K.A. Kusters, S.E. Pratsinis, S.G. Thoma, D.M. Smith, Ultrasonic fragmentation of agglomerate powders. Chem. Eng. Sci. 48(24), 4119–4127 (1993). doi:10.1016/0009-2509(93)80258-R

    Google Scholar 

  • K.A. Kusters, S.E. Pratsinis, S.G. Thoma, D.M. Smith, Energy-size reduction laws for ultrasonic fragmentation. Powder Technol. 80(3), 253–263 (1994). doi:10.1016/0032-5910(94)02852-4

    Article  Google Scholar 

  • A. Kwade, J. Schwedes, Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol. 122(2–3), 109–121 (2002). doi: 10.1016/S0032-5910(01)00406-5

    Google Scholar 

  • F. Liepe, Grundvorgänge und Mikroprozesse in turbulenten Strömungen, in Handbuch der Mechanischen Verfahrenstechnik, Bd. 1; Chapter 3.3, ed. by Schubert (Wiley-VCH, Weinheim, 2003), pp. 153–183

    Google Scholar 

  • J.K. Mackenzie, The elastic constants of a solid containing spherical holes. Proc. Phys. Soc. B 63(1), 2–11 (1950). doi:10.1088/0370-1301/63/1/302

    Google Scholar 

  • S. Mende, F. Stenger, W. Peukert, J. Schwedes, Production of sub-micron particles by wet comminution in stirred media mills. J. Mat. Sci. 39(16–17), 5223–5226 (2004). doi:10.1023/B:JMSC.0000039214.12131.58

    Article  Google Scholar 

  • O. Nagel, H. Kürten, Untersuchungen zum Dispergieren im turbulenten Scherfeld. Chem. Ing. Tech. 48(6), 513–519 (1976). doi:10.1002/cite.330480604

    Google Scholar 

  • H. Oertel (ed.), Prandtl’s essentials of fluid mechancs, . In series: Applied Mathematical Sciences, vol. 158, 2nd ed. eds. by S.S. Antman, J.E. Mardsen, L. Sirovich (Springer, New York, 2004)

    Google Scholar 

  • B. Park, D. Smith, S. Thoma, Determination of agglomerate strength distributions: part 4. Analysis of multimodal particle size distributions. Powder Technol. 76(2), 125–133 (1993). doi:10.1016/S0032-5910(05)80019-1

    Article  Google Scholar 

  • M. Pohl, S. Hogekamp, N.Q. Hoffmann, H.P. Schuchmann, Dispergieren und Desagglomerieren von Nanopartikeln mit Ultraschall. Chem. Ing. Tech. 76(4), 392–396 (2004). doi:10.1002/cite.200403371

    Google Scholar 

  • J. Raasch, Die Bewegung und Beanspruchung kugelförmiger und zylindrischer Teilchen in zähen Scherströmungen, in 1. Europäische Symposium Zerkleinern, Frankfurt a.M., (Proceedings), eds. by H. Rumpf, D. Behrens (Verlag Chemie, Weinheim, 1962), pp. 138–150

    Google Scholar 

  • H. Reichert, Desagglomeration organischer Farbpigmente in Scherströmungen hochzäher Flüssigkeiten. Chem. Ing. Tech. 45(6), 391–395 (1973). doi:10.1002/cite.330450612

    Google Scholar 

  • H. Rumpf, Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftübertragung an Kontaktpunkten. Chem. Ing. Techn. 42(8), 538–540 (1970)

    Article  Google Scholar 

  • S.P. Rwei, I. Manas-Zloczower, D.L. Feke, Observation of carbon black agglomerate dispersion in simple shear flows. Polym. Eng. Sci. 30(12), 701–706 (1990). doi:10.1002/pen.760301202

    Google Scholar 

  • S. Sen, M.L. Ram, S. Roy, B.K. Sarkar, The structural transformation of anatase TiO2 by high-energy vibrational ball milling. J. Mater. Res. 14(3), 841–848 (1999). doi:10.1557/JMR.1999.0112

    Article  Google Scholar 

  • W.O. Smith, P.D. Foote, P.F. Busang, Packing of homogeneous spheres. Phys. Rev. 34(9), 1271–1274 (1929). doi:10.1103/PhysRev.34.1271

    Article  Google Scholar 

  • F. Stenger, M. Götzinger, P. Jakob, W. Peukert, Mechano-chemical changes of nano sized alpha-Al2O3 during wet dispersion in stirred ball mills. Part. Part. Syst. Charact. 21(1), 31–38 (2004). doi:10.1002/ppsc.200400902

    Article  Google Scholar 

  • N. Tambo, H. Hozumi, Physical characteristics of flocs – II. Strength of floc. Water Res. 13(5), 421–427 (1979). doi:10.1016/0043-1354(79)90034-4

    Google Scholar 

  • S. Tang, Y. Ma, C. Shiu, Modelling of mechanical strength of fractal aggregates. Colloids Surf. A 180(1–2), 7–16 (2001). doi:10.1016/S0927-7757(03)00743-3

    Article  Google Scholar 

  • G.I. Taylor, The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146(858), 501–523 (1934). doi:10.1098/rspa.1934.0169

    Article  Google Scholar 

  • S.G. Thoma, M. Ciftcioglu, D.M. Smith, Determination of agglomerate strength distributions. Part 1. Calibration via ultrasonic forces. Powder Technol. 68(1), 53–61 (1991). doi:10.1016/0032-5910(91)80063-O

    Google Scholar 

  • B.J. Trevelyan, S.G. Mason, Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6(4), 354–367 (1951). doi:10.1016/0095-8522(51)90005-0

    Article  Google Scholar 

  • O. Vasylkiv, Y. Sakka, Synthesis and colloidal processing of zirconia nanopowder. J. Am. Ceram. Soc. 84(11), 2489–2494 (2001). doi:10.1111/j.1151-2916.2001.tb01041.x

    Article  Google Scholar 

  • E. Webster, Cavitation. Ultrasonics 1(1), 39–48 (1963). doi:10.1016/0041-624X(63)90116-1

    Article  Google Scholar 

Dispersion Techniques and Dispersion of Pyrogenic Powders

  • J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H.P. Schuchmann, Deagglomeration processes in high-shear devices. Chem. Eng. Res. Design 86(12), 1369–1381 (2008). doi:10.1016/j.cherd.2008.08.016

    Article  Google Scholar 

  • J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H. P. Schuchmann, Agglomerate dispersion in cavitating flows. Chem. Eng. Res. Des. 87(4), 474–484 (2009). doi:10.1016/j.cherd.2008.12.015

    Google Scholar 

  • H.-J. Henzler, A. Biedermann, Modelluntersuchungen zur Partikelbeanspruchung in Reaktoren. Chem. Ing. Tech. 68(12), 1546–1561 (1996). doi:10.1002/cite.330681205

  • H. Karbstein, H. Schubert, Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Process. 34(3), 205–211 (1995). doi:10.1016/0255-2701(94)04005-2

    Google Scholar 

  • M. Kobayashi, Y. Adachi, S. Ooi, Breakup of fractal flocs in a turbulent flow. Langmuir 15(13), 4351–4356 (1999). doi:10.1021/la980763o

    Article  Google Scholar 

  • M. Kobayashi, Breakup and strength of polystyrene latex flocs subjected to a converging flow. Colloids Surf. A 235(1–3), 73–78 (2004). doi:10.1016/j.colsurfa.2004.01.008

    Google Scholar 

  • T. Kuntzsch, Erfassung und Beeinflussung des Zustandes von Poliersuspensionen für das chemisch-mechanische Polieren (CMP) in der Halbleiterbauelementfertigung. PhD thesis, Technische Universität Dresden, 2004

    Google Scholar 

  • K.A. Kusters, S.E. Pratsinis, S.G. Thoma, D.M. Smith, Ultrasonic fragmentation of agglomerate powders. Chem. Eng. Sci. 48(24), 4119–4127 (1993). doi:10.1016/0009-2509(93)80258-R

    Google Scholar 

  • A. Kwade, J. Schwedes, Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills. Powder Technol. 122(2–3), 109–121 (2002). doi:10.1016/S0032-5910(01)00406-5

    Google Scholar 

  • N. Mandzy, E. Grulke, T. Druffel, Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol. 160(2), 121–126 (2005). doi:10.1016/j.powtec.2005.08.020

    Article  Google Scholar 

  • S. Mende, F. Stenger, W. Peukert, J. Schwedes, Production of sub-micron particles by wet comminution in stirred media mills. J. Mat. Sci. 39(16–17), 5223–5226 (2004). doi:10.1023/B:JMSC.0000039214.12131.58

    Google Scholar 

  • O. Nagel, H. Kürten, Untersuchungen zum Dispergieren im turbulenten Scherfeld. Chem. Ing. Tech. 48(6), 513–519 (1976). doi:10.1002/cite.330480604

    Google Scholar 

  • B. Park, D. Smith, S. Thoma, Determination of agglomerate strength distributions: part 4. Analysis of multimodal particle size distributions. Powder Technol. 76(2), 125–133 (1993). doi:10.1016/S0032-5910(05)80019-1

    Google Scholar 

  • M. Pohl, S. Hogekamp, N.Q. Hoffmann, H.P. Schuchmann, Dispergieren und Desagglomerieren von Nanopartikeln mit Ultraschall. Chem. Ing. Tech. 76(4), 392–396 (2004). doi:10.1002/cite.200403371

    Google Scholar 

  • M. Pohl, Benetzen und Dispergieren nativer und gezielt agglomerierter pyrogener oxidischer Partikel. PhD thesis, Universität Fridericiana Karlsruhe (TH), 2005

    Google Scholar 

  • M. Pohl, H. Schubert, H.P. Schuchmann, Herstellung stabiler Dispersionen aus pyrogener Kieselsäure. Chem. Ing. Tech. 77(3), 258–262 (2005). doi:10.1002/cite200407020

    Article  Google Scholar 

  • H. Reichert, Desagglomeration organischer Farbpigmente in Scherströmungen hochzäher Flüssigkeiten. Chem. Ing. Tech. 45(6), 391–395 (1973). doi:10.1002/cite.330450612

    Google Scholar 

  • J.F. Richardson, J.H. Harker, Coulson and Richardson’s chemical engineering, vol. 2: particle technology and separation processes, 5th ed. (Butterworth-Heinemann, Oxford, 2002). ISBN: 0 7506 4445 1

    Google Scholar 

  • S.P. Rwei, I. Manas-Zloczower, D.L. Feke, Observation of carbon black agglomerate dispersion in simple shear flows. Polym. Eng. Sci. 30(12), 701–706 (1990). doi:10.1002/pen.760301202

    Google Scholar 

  • S.P. Rwei, I. Manas-Zloczower, D.L. Feke, Characterization of agglomerate dispersion by erosion in simple shear flows. Polym. Eng. Sci. 31(8), 558–562 (1991). doi:10.1002/pen.760310804 see also: Correction. Polym. Eng. Sci. 31(20), 1508 (1991)

  • C. Sauter, H.P. Schuchmann, Materialschonendes Hochdruckdispergieren mit dem high pressure post feeding (HPPF)-system. Chem. Ing. Techn. 80(3), 365–372 (2008). doi:10.1002/cite.200700149

    Article  Google Scholar 

  • C. Sauter, M.A. Emin, H.P. Schuchmann, S. Tavman, Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrasonics Sonochem. 15(4), 517–523 (2008). doi:10.1016/j.ultsonch.2007.08.010

    Article  Google Scholar 

  • K. Schönert, Zerkleinern, in Handbuch der Mechanischen Verfahrenstechnik, Bd. 1, ed. by H. Schubert (Wiley-VCH, Weinheim, 2003), pp. 299–382

    Google Scholar 

  • H.P. Schuchmann, T. Danner, Emulgieren: Mehr als nur Zerkleinern. Chem. Ing. Tech. 76(4), 364–375 (2004). doi:10.1002/cite.200406163

    Article  Google Scholar 

  • M. Sommer, F. Stenger, W. Peukert, N.J. Wagner, Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chem. Eng. Sci. 61(1), 135–148 (2006). doi:10.1016/j.ces.2004.12.057

    Google Scholar 

  • W. Süß, H. Hanke, Über die Bedeutung von Kavitation und Grenzflächenreibung bei der Dispergierung suspendierter Feststoffe durch Ultraschall. Pharmazie 24(5), 270–272 (1969)

    Google Scholar 

  • N. Tambo, H. Hozumi, Physical characteristics of flocs—II. Strength of floc. Water Res. 13(5), 421–427 (1979). doi:10.1016/0043-1354(79)90034-4

    Google Scholar 

  • A. Teleki, R. Wengeler, L. Wengeler, H. Nirschl, S.E. Pratsinis, Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol. 181(3), 292–300 (2008). doi:10.1016/j.powtec.2007.05.016

    Google Scholar 

  • S.G. Thoma, M. Ciftcioglu, D.M. Smith, Determination of agglomerate strength distributions. Part 1. Calibration via ultrasonic forces. Powder Technol. 68(1), 53–61 (1991). doi:10.1016/0032-5910(91)80063-O

    Google Scholar 

  • K. Urban, G. Wagner, D. Schaffner, D. Röglin, J. Ulrich, Rotor-stator and disc systems for emulsification processes. Chem. Eng. Technol. 29(1), 24–31 (2006). doi:10.1002/ceat.200500304

    Article  Google Scholar 

  • R. Wengeler, F. Ruslim, H. Nirschl, T. Merkel, Dispergierung feindisperser Agglomerate mit Mikro-Dispergierelementen. Chem. Ing. Tech. 76(5), 659–662 (2004). doi:10.1002/cite.200403391

    Google Scholar 

  • R. Wengeler, A. Teleki, M. Vetter, S.E. Pratsinis, H. Nirschl, High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22(11), 4928–4935 (2006). doi:10.1021/la053283n

    Article  Google Scholar 

Characterisation of Dispersion Processes

  • F. Babick, M. Stintz, H. Barthel, M. Heinemann, Characterization of size and structure of fumed silica particles in suspensions, in Organosilicon Chemistry VI—From Molecule to Material, eds. by N. Auner, J. Weis (VCH-Wiley, Weinheim, 2005), pp. 882–887. ISBN-10: 3-527-31214-5

    Google Scholar 

  • J. Bałdyga, Ł. Makowski, W. Orciuch, C. Sauter, H.P. Schuchmann, Agglomerate dispersion in cavitating flows. Chem. Eng. Res. Des. 87(4), 474–484 (2009). doi:10.1016/j.cherd.2008.12.015

    Google Scholar 

  • F. Hinze, Beitrag zur Charakterisierung hochkonzentrierter Suspensionen mittels Ultraschallspektroskopie. PhD thesis, Technische Universität Dresden, 2001

    Google Scholar 

  • ISO 1524, Paints, varnishes and printing inks—Determination of fineness of grind (Beuth-Verlag Berlin, 2002)

    Google Scholar 

  • T. Kuntzsch, U. Witnik, M. Hollatz, M. Stintz, S. Ripperger, Characterization of slurries used for chemical-mechanical polishing (CMP) in the semiconductor industry. Chem. Eng. Technol. 26(12), 1235–1239 (2003). doi:10.1002/ceat.200303050

    Article  Google Scholar 

  • M. Maier, B. Hannebauer, H. Holldorff, P. Albers, Does lung surfactant promote disaggregation of nanostructured titanium dioxide? J. Occup. Environ. Med. 48(12), 1314–1320 (2006). doi:10.1097/01.jom.0000215405.72714.b2

    Article  Google Scholar 

  • G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Goldlösungen, Ann. Phys. IV 25(3), 377–445 (1908). doi:10.1002/andp.19083300302

    Google Scholar 

  • A. Nogowski, F. Babick, M. Stintz, Several methods to quantify the dispersion progress of concentrated suspensions. On the CD-ROM: WCPT6 2010, World Congress on Particle Technology, Nuremberg, 26–29 Apr 2010. ISBN: 978-3-00-030570-2 (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper 00284

    Google Scholar 

  • M. Pohl, S. Hogekamp, N.Q. Hoffmann, H.P. Schuchmann, Dispergieren und Desagglomerieren von Nanopartikeln mit Ultraschall. Chem. Ing. Tech. 76(4), 392–396 (2004). doi:10.1002/cite.200403371

    Google Scholar 

  • M. Pohl, H. Schubert, H.P. Schuchmann, Herstellung stabiler Dispersionen aus pyrogener Kieselsäure. Chem. Ing. Tech. 77(3), 258–262 (2005). doi:10.1002/cite200407020

    Article  Google Scholar 

  • M. Pohl, Benetzen und Dispergieren nativer und gezielt agglomerierter pyrogener oxidischer Partikel. PhD thesis, Universität Fridericiana Karlsruhe (TH), 2005

    Google Scholar 

  • H. Reichert, Desagglomeration organischer Farbpigmente in Scherströmungen hochzäher Flüssigkeiten. Chem. Ing. Tech. 45(6), 391–395 (1973). doi:10.1002/cite.330450612

    Google Scholar 

  • O. Ruscitti, R. Franke, H. Hahn, F. Babick, T. Richter, M. Stintz, Application of particle measurement technology in process intensification. Chem. Eng. Technol. 31(2), 270–277 (2008). doi:10.1002/ceat.200700465

    Article  Google Scholar 

  • K. Schießl, Erarbeitung eines Konzeptes zur Einführung von einzelpartikelbewertenden Messverfahren für die Qualitätssicherung in der Herstellung von kolloidalen Dispersionen. Internal Report. Technische Universität Dresden, Institut für Verfahrenstechnik und Umwelttechnik, 2007

    Google Scholar 

  • M. Sommer, F. Stenger, W. Peukert, N.J. Wagner, Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chem. Eng. Sci. 61(1), 135–148 (2006). doi:10.1016/j.ces.2004.12.057

    Google Scholar 

  • M. Stintz, F. Hinze, S. Ripperger, Particle size characterization of inorganic colloids by ultrasonic attenuation spectrometry, in Handbook on ultrasonic and dielectric characterization techniques for suspended particles, eds. by V.A. Hackley, J. Texter (The American Ceramic Society, 1998), pp. 219–228. ISBN: 1-57498-034-3

    Google Scholar 

  • W. Süß, H. Hanke, Über die Dispergierung suspendierter Feststoffe durch Ultraschall. Pharmazie, 24(4), 211–220 (1969)

    Google Scholar 

  • A. Teleki, R. Wengeler, L. Wengeler, H. Nirschl, S.E. Pratsinis, Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion. Powder Technol. 181(3), 292–300 (2008). doi:10.1016/j.powtec.2007.05.016

    Google Scholar 

  • S.G. Thoma, M. Ciftcioglu, D.M. Smith, Determination of agglomerate strength distributions. Part 2. Application to model agglomerates. Powder Technol. 68(1), 63–69 (1991). doi:10.1016/0032-5910(91)80064-P

    Google Scholar 

  • R. Wengeler, F. Ruslim, H. Nirschl, T. Merkel, Dispergierung feindisperser Agglomerate mit Mikro-Dispergierelementen. Chem. Ing. Tech. 76(5), 659–662 (2004). doi:10.1002/cite.200403391

    Google Scholar 

  • R. Wengeler, A. Teleki, M. Vetter, S.E. Pratsinis, H. Nirschl, High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates. Langmuir 22(11), 4928–4935 (2006). doi:10.1021/la053283n

    Article  Google Scholar 

  • R. Xu, Particle characterization: Light scattering methods (Kluwer Academic Publishers, Dortrecht, 2000). ISBN: 0-7923-6300-0

    Google Scholar 

Basics of Suspension Stability

  • A. Bleier, C.G. Westmoreland, Effects of pH and particle size on the processing of and the development of microstructure in alumina–zirconia composites. J. Am. Ceram. Soc. 74(12), 3100–3111 (1991). doi:10.1111/j.1151-2916.1991.tb04307.x

    Article  Google Scholar 

  • B. Derjaguin, On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobe sols. Trans. Faraday Soc. 35, 203–215 (1940). doi:10.1039/TF9403500203

    Article  Google Scholar 

  • B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged-particles in solutions of electrolytes, Prog. Surf. Sci. 43(1–4), 30–59 (1993). Reprinted from: Acta phys.-chim. 14(6), 633–662 (1941). doi:10.1016/0079-6816(93)90013-L

    Google Scholar 

  • M. Faraday, Experimental relations of gold (and other metals) to light, in Experimental Researches in Chemistry and Physics, ed. by J.W. Gentry (Taylor and Francis, London, 1857), pp. 391–443, The aerosol science contributions of Michael Faraday. J. Aerosol Sci. 26(2), 341–349 (1995)

    Google Scholar 

  • N. Fuchs, Über die Stabilität und Aufladung der Aerosole. Z. Phys. 89(11–12), 736–743 (1934). doi:10.1007/BF01341386

    Article  Google Scholar 

  • W.B. Hardy, A preliminary investigation of the conditions which determine the stability of irreversible hydrosols. J. Phys. Chem. 4(4), 235–253 (1900). doi:10.1021/j150022a001

    Article  Google Scholar 

  • T.W. Healy, A. Homola, R.O. James, R.J. Hunter, Coagulation of amphoteric latex colloids: reversibility and specific ion effects. Faraday Discuss. Chem. Soc. 65, 156–163 (1978). doi:10.1039/dc9786500156

    Article  Google Scholar 

  • R. Hogg, The role of polymer adsorption kinetics in flocculation. Colloids Surf. A 146(1–3), 253–263 (1999). doi:10.1016/S0927-7757(98)00723-7

    Article  Google Scholar 

  • E.P. Honig, G.J. Roebersen, P.H. Wiersema, Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids. J. Colloid Interface Sci. 36(1), 97–109 (1971). doi:10.1016/0021-9797(71)90245-1

    Article  Google Scholar 

  • R.J. Hunter, Zeta potential in colloid science: principles and applications. In series: Colloid science, vol. 2, 3rd ed. (Academic Press, London, 1988). ISBN: 0-12-361961-0

    Google Scholar 

  • M. Hütter, Coagulation rates in concentrated colloidal suspensions studied by Brownian dynamics simulation. Phys. Chem. Chem. Phys. 1(18), 4429–4436 (1999). doi:10.1039/a904615a

    Article  Google Scholar 

  • D.J. McClements, Theoretical analysis of factors affecting the formation and stability of multilayered colloidal dispersions. Langmuir 21(21), 9777–9785 (2005). doi:10.1021/la0512603

    Article  Google Scholar 

  • D.N.L. McGown, G.D. Parfitt, Improved theoretical calculation of the stability ratio for colloidal systems. J. Phys. Chem. 71(2), 449–450 (1967). doi:10.1021/j100861a041

    Article  Google Scholar 

  • J.A. Molina-Bolívar, F. Galisteo-González, R. Hidalgo-Álvarez, Colloidal stability of protein-polymer systems: a possible explanation by hydration forces. Phys. Rev. E 55(4), 4522–4530 (1997). doi:10.1103/PhysRevE.55.4522

    Article  Google Scholar 

  • P. Mulvaney, L.M. Liz-Marzan, M. Giersig, T. Ung, Silica encapsulation of quantum dots and metal clusters. J. Mater. Chem. 10(6), 1259–1270 (2000). doi:10.1039/b000136h

    Article  Google Scholar 

  • A. Oolsen, G. Franks, S. Biggs, G.J. Jameson, An improved collision efficiency model for particle aggregation. J. Chem. Phys. 125(18), 184906 (2006). doi:10.1063/1.2387172

    Article  Google Scholar 

  • K. Paciejewska, F. Babick, M. Stintz, R. Lange, Conditioning of binary suspensions of colloidal metal oxides particles. On the CD-ROM: PARTEC 2007, International Congress for Particle Technology, Nuremberg, 27–29 Mar 2007 (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper P12_03

    Google Scholar 

  • K.M. Paciejewska, Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen. PhD thesis, Technische Universität Dresden, 2010. urn: nbn:de:bsz:14-qucosa-65050

  • G. Quincke, Ueber die Fortführung materieller Theilchen durch strömende Elektricität. Ann. Phys. II 113(8), 513–598 (1861)

    Google Scholar 

  • V. Ramakrishnan, Pradip, S.G. Malghan, The stability of alumina-zirconia suspensions. Colloids Surf. A 133(1–2), 135–142 (1998). doi:10.1016/S0927-7757(97)00135-0

    Google Scholar 

  • P. Sandkühler, M. Lattuada, H. Wu, J. Sefcik, M. Morbidelli, Further insights into the universality of colloidal aggregation. Adv. Colloid Interface Sci. 113(2–3), 65–83 (2005). doi:10.1016/j.cis.2004.12.001

    Article  Google Scholar 

  • H. Schulze, Schwefelarsen in wässriger Lösung. J. Prakt. Chem. 25, 431–452 (1882)

    Article  Google Scholar 

  • H. Schulze, Antimontrisulfid in wässriger Lösung. J. Prakt. Chem. 27, 320–332 (1883)

    Article  Google Scholar 

  • R.H. Smellie Jr, V.K. La Mer, Flocculation, subsidence and filtration of phosphate slimes. VI. A quantitative theory of filtration of flocculated suspensions. J. Colloid Sci. 23(6), 589–599 (1958). doi:10.1016/0095-8522(58)90071-0

    Article  Google Scholar 

  • M.V. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen. Phys. Z. 17, 557–571, 585–599 (1916)

    Google Scholar 

  • L.A. Spielman, Viscous interactions in Brownian coagulation. J. Colloid Interface Sci. 33(4), 562–571 (1970). doi:10.1016/0021-9797(70)90008-1

    Article  Google Scholar 

  • H. Yotsumoto, R.-H. Yoon, Application of extended DLVO-theory: 1. Stability of rutile suspensions. J. Colloid Interface Sci. 157(2), 426–433 (1993a). doi:10.1006/jcis.1993.1205

    Google Scholar 

  • H. Yotsumoto, R.-H. Yoon, Application of extended DLVO-theory: 2. Stability of silica suspensions. J. Colloid Interface Sci. 157(2), 434–441 (1993b). doi:10.1006/jcis.1993.1206

    Google Scholar 

  • R. Zsigmondy, Die chemische Natur des Cassiusschen Goldpurpurs. Liebigs Ann. Chem. 301(2–3), 361–387 (1898)

    Article  Google Scholar 

Experimental Characterisation of Suspension Stability

  • F. Bakkali, A. Moudden, B. Faiz, A. Amghar, G. Maze, F. Montero de Espinosa, M. Akhnak, Ultrasonic measurement of milk coagulation time. Meas. Sci. Technol. 12(12), 2154–2159 (2001). doi:10.1088/0957-0233/12/12/317

    Article  Google Scholar 

  • B.P. Binks, S.O. Lumsdon, Stability of oil-in-water emulsions stabilised by silica particles. Phys. Chem. Chem. Phys. 1(12), 3007–3016 (1999). doi:10.1039/a902209k

    Article  Google Scholar 

  • T. Breyer, J. Sonnefeld, Rheological investigation in aqueous soluton of nanosized powders, in Handling of higly dispersed powders, eds. by E. Müller, C. Oestreich (Shaker Verlag, Aachen, 2004), pp. 124–131. ISBN: 3-8322-3244-3

    Google Scholar 

  • H. Eilers, J. Korff, The significance of the phenomenon of the electrical charge on the stability of hydrophobic dispersions. Trans. Faraday Soc. 35(3), 229–240 (1940). doi:10.1039/tf9403500229

    Article  Google Scholar 

  • B. Fitch, Sedimentation of flocculent suspensions: State of the art. AIChE J. 25(6), 913–930 (1979). doi:10.1002/aic.690250602

    Article  Google Scholar 

  • G.V. Franks, S.B. Johnson, P.J. Scales, D.V. Boger, T.W. Healy, Ion-specific strength of attractive particle networks. Langmuir 15(13), 4411–4420 (1999). doi:10.1021/la9815345

    Article  Google Scholar 

  • H. Geers, W. Witt, F. Babick, Stability analysis of emulsions and suspensions with photon cross-correlation spectroscopy. On the CD-ROM: PARTEC 2007, International Congress for Particle Technology, Nuremberg, 27–29 Mar 2007 (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper P14_08

    Google Scholar 

  • R. Greenwood, Review of the measurement of zeta potentials in concentrated aqeous suspensions using electroacoustics. Adv. Colloid Interface Sci. 106(1–3), 55–81 (2003). doi:10.1016/S0001-8686(03)00105-2

    Article  Google Scholar 

  • J. Gregory, Monitoring particle aggregation processes. Adv. Colloid Interface Sci. 147–148, 109–123 (2009). doi:10.1016/j.cis.2008.09.003

    Article  Google Scholar 

  • F. Gruy, Formation of small silica aggregates by turbulent aggregation. J. Colloid Interface Sci. 237(1), 28–39 (2001). doi:10.1006/jcis.2001.7432

    Article  Google Scholar 

  • U. Kätzel, T. Richter, M. Stintz, H. Barthel, T. Gottschalk-Gaudig, Phase transitions of pyrogenic silica suspensions: a comparison to model laponite. Phys. Rev. E 76(3), 031402 (2007). doi:10.1103/PhysRevE.76.031402

    Article  Google Scholar 

  • P. Kippax, J.D. Sherwood, D.J. McClements, Ultrasonic spectroscopy study of globule aggregation in parenteral fat emulsions containing calcium chloride. Langmuir 15(5), 1673–1678 (1999). doi:10.1021/la981351i

    Article  Google Scholar 

  • T. Kuhlbusch, C. Nickel, B. Hellack, S. Gartiser, F. Flach et al., In series: Fate and behaviour of TiO2 nanomaterials in the environment, influenced by their shape, size and surface area, ed. by D. Völker, Texte 25/2012 (Umweltbundesamt, Dessau-Roßlau, 2012). ISSN 1862-4804

    Google Scholar 

  • H. Lichtenfeld, H. Stechemesser, H. Möhwald, Single particle light-scattering photometry—some fields of application. J. Colloid Interface Sci. 276(1), 97–105 (2004). doi:10.1016/j.jcis.2004.03.038

    Article  Google Scholar 

  • J. Lyklema, Fundamentals of Interface and Colloid Science III: Liquid-Fluid Interfaces (Academic Press, San Diego, 2000). ISBN 0-12-460523-0

    Google Scholar 

  • S. Manley, L. Cipelletti, V. Trappe, A.E. Bailey, R.J. Christianson et al., Limits to gelation in colloidal aggregation. Phys. Rev. Lett. 93(10), 108302 (2004). doi:10.1103/PhysRevLett.93.108302

    Article  Google Scholar 

  • S. Manley, B. Davidovitch, N.R. Davies, L. Cipelletti, A.E. Bailey et al., Time-dependent strength of colloidal gels. Phys. Rev. Lett. 95(4), 048302 (2005). doi:10.1103/PhysRevLett.95.048302

    Article  Google Scholar 

  • M.J. Mateo, D.J. O’Callaghan, C.D. Everard, M. Castillo, F.A. Payne, C.P. O’Donnell, Evaluation of on-line optical sensing techniques for monitoring curd moisture content and solids in whey during syneresis. Food Res. Int. 43(1), 177–182 (2010). doi:10.1016/j.foodres.2009.09.023

    Article  Google Scholar 

  • S. Mirza, J.F. Richardson, Sedimentation of suspensions of particles of two or more sizes. Chem. Eng. Sci. 34(4), 447–454 (1979). doi:10.1016/0009-2509(79)85088-5

    Article  Google Scholar 

  • C. Nickel, B. Hellack, A. Nogowski, F. Babick, M. Stintz, H. Maes, A. Schäffer, T.A.J. Kuhlbusch, In series: Mobility, fate and behavior of TiO 2 nanomaterials in different environmental media, eds. by D. Völker, P. Apel, Texte 76/2013 (Umweltbundesamt, Dessau-Roßlau, 2013). ISSN 1862-4804

    Google Scholar 

  • A. Nogowski, F. Babick, C. Nickel, T. A. J. Kuhlbusch, M. Stintz, Size and stability of functionalised titanium dioxide as a function of pH and ionic background electrolyte. On the CD-ROM: PARTEC 2013, International Congress for Particle Technology, Nuremberg, 23–25 Apr 2013. ISBN: 978-3-00-040578-5 (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), paper 317

    Google Scholar 

  • D.J. O’Callaghan, C.P. O’Donnell, F.A. Payne, On-line sensing techniques for coagulum setting in renneted milks. J. Food Eng. 43(3), 155–165 (2000). doi:10.1016/S0260-8774(99)00145-4

    Article  Google Scholar 

  • K.M. Paciejewska, Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen. PhD thesis, Technische Universität Dresden, 2010. urn: nbn:de:bsz:14-qucosa-65050

  • D. Quemada, C. Berli, Energy of interaction in colloids and its implications in rheological modeling. Adv. Colloid Interface Sci. 98(1), 51–85 (2002). doi:10.1016/S0001-8686(01)00093-8

    Article  Google Scholar 

  • N. Schelero, H. Lichtenfeld, H. Zastrow, H. Möhwald, M. Dubois, T. Zemb, Single particle light scattering method for studying aging properties of Pickering emulsions stabilized by catanionic crystals. Colloids Surf. A 337(1–3), 146–153 (2009). doi:10.1016/j.colsurfa.2008.12.013

    Article  Google Scholar 

  • B. Senouci, S. Serfaty, P. Griesmar, M. Gindre, Acoustic resonance in tetramethoxysilane matrices: A new tool to characterize the gel formation. Rev. Sci. Instrum. 72(4), 2134–2138 (2001). doi:10.1063/1.1355266

    Article  Google Scholar 

  • T. Sobisch, D. Lerche, T. Detloff, M. Beiser, A. Erk, Tracing the centrifugal separation of fine-particle slurries by Analytical centrifugation. Filtration 6(4), 313–311 (2006)

    Google Scholar 

  • L. Steinke, B. Wessely, S. Ripperger, Optische Extinktionsmessverfahren zur Inline-Kontrolle disperser Stoffsysteme. Chem. Ing. Tech. 81(6), 735–747 (2009). doi:10.1002/cite.200800129

    Article  Google Scholar 

  • W. Sutananta, D.Q.M. Craig, J.M. Newton, The use of dielectric analysis as a means of characterising the effects of moisture uptake by pharmaceutical glyceride bases. Int. J. Pharm. 132(1–2), 1–8 (1996). doi:10.1016/0378-5173(95)04226-1

    Article  Google Scholar 

  • S. Tamburic, D.Q.M. Craig, G. Vuleta, J. Milic, A comparison of electrical and rheological techniques for the characterisation of creams. Int. J. Pharm. 137(2), 243–248 (1996). doi:10.1016/0378-5173(96)04528-0

    Article  Google Scholar 

  • H. Tanaka, J. Meunier, D. Bonn, Nonergodic states of charged colloidal suspensions: repulsive and attractive glasses and gels. Phys. Rev. E 69(3), 031404 (2004). doi:10.1103/PhysRevE.69.031404

    Article  Google Scholar 

  • W. Vogelsberger, A. Seidel, R. Fuchs, Contribution to the determination of kinetic parameters of the sol-gel transformation by rheological measurements. J. Colloid Interface Sci. 230(2), 268–271 (2000). doi:10.1006/jcis.2000.7095

    Article  Google Scholar 

  • J. Weiss, N. Herrmann, D.J. McClements, Ostwald ripening of hydrocarbon emulsion droplets in surfactant solutions. Langmuir 15(20), 6652–6657 (1999). doi:10.1021/la981739d

    Article  Google Scholar 

  • B. Wessely, J. Altmann, S. Ripperger, The use of statistical properties of transmission signals for particle characterization. Chem. Eng. Technol. 19(5), 438–442 (1996). doi:10.1002/ceat.270190509

    Article  Google Scholar 

  • P.R. Williams, R.L. Williams, R. Jones, A. Al-Hussany, S. Ravji, New techniques in sol-gel characterisation—mechanical measurements and fractal characteristics. J. Non-Cryst. Solids 293–295, 731–745 (2001). doi:10.1016/S0022-3093(01)00852-3

    Article  Google Scholar 

  • A. Wittmar, D. Ruiz-Abad, M. Ulbricht, Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. J. Nanopart. Res. 14, 651 (2012). doi:10.1007/s11051-011-0651-1

    Article  Google Scholar 

  • H. Yotsumoto, R.-H. Yoon, Application of extended DLVO-theory: 1. Stability of rutile suspensions. J. Colloid Interface Sci. 157(2), 426–433 (1993a). doi:10.1006/jcis.1993.1205

    Google Scholar 

  • H. Yotsumoto, R.-H. Yoon, Application of extended DLVO-theory: 2. Stability of silica suspensions. J. Colloid Interface Sci. 157(2), 434–441 (1993b). doi:10.1006/jcis.1993.1206

    Google Scholar 

Stability of Binary Suspensions

  • M. Cerbelaud, A. Videcoq, P. Abélard, C. Pagnoux, F. Rossignol, R. Ferrando, Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: Experiment and simulation. Langmuir 24(7), 3001–3008 (2008). doi:10.1021/la702104u

    Article  Google Scholar 

  • M.L. Fisher, M. Colic, M.P. Rao, F.F. Lange, Effect of silica nanoparticle size on the stability of alumina/silica suspensions. J. Am. Ceram. Soc. 84(4), 713–718 (2001). doi:10.1111/j.1151-2916.2001.tb00731.x

    Article  Google Scholar 

  • P. Garcia-Perez, C. Pagnoux, F. Rossignol, J.F. Baumard, Heterocoagulation between SiO2 nanoparticles and Al2O3 submicronparticles; influence of the background electrolyte. Colloids Surf. A 281(1–3), 58–66 (2006). doi:10.1016/j.colsurfa.2006.02.018

    Article  Google Scholar 

  • E.V. Golikova, Y.M. Chernoberezhskii, Investigation into the heterocoagulation of two-component disperse systems containing nanosized and submicron particles with different degrees of hydrophilicity. Glass Phys. Chem. 31(3), 280–290 (2005). doi:10.1007/s10720-005-0057-1

    Article  Google Scholar 

  • T.W. Healy, G.R. Wiese, D.E. Yates, B.V. Kavanagh, Heterocoagulation in mixed oxide colloidal dispersions. J. Colloid Interface Sci. 43(3), 647–649 (1973). doi:10.1016/0021-9797(73)90051-9

    Article  Google Scholar 

  • R. Hogg, T.W. Healy, D.W. Fuerstenau, Mutual coagulation of colloidal dispersions. Trans. Faraday Soc. 62, 1638–1651 (1966). doi:10.1039/TF9666201638

    Article  Google Scholar 

  • A.M. Islam, B.Z. Chowdhry, M.J. Snowden, Heteroaggregation in colloidal dispersions. Adv. Colloid Interface Sci. 62(2–3), 109–136 (1995). doi:10.1016/0001-8686(95)00276-V

    Article  Google Scholar 

  • P.K. Jal, S. Patel, B.K. Mishra, Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62(5), 1005–1028 (2004). doi:10.1016/j.talanta.2003.10.028

    Article  Google Scholar 

  • J.M. López-López, A. Schmitt, A. Moncho-Jordá, R. Hidalgo-Álvarez, Stability of binary colloids: kinetic and structural aspects of heteroaggregation processes. Soft Matter 2(12), 1025–1042 (2006). doi:10.1039/b608349h

    Article  Google Scholar 

  • J. Lyklema, Fundamentals of interface and colloid science II: Solid-liquid interfaces (Academic Press, San Diego, 1995). ISBN 0-12-460524-9

    Google Scholar 

  • J. Lyklema, J.F.L. Duval, Hetero-interaction between Gouy-Stern double layers: Charge and potential regulation. Adv. Colloid Interface Sci. 114–115, 27–45 (2005). doi:10.1016/j.cis.2004.05.002

    Article  Google Scholar 

  • K.M. Paciejewska, Untersuchung des Stabilitätsverhaltens von binären kolloidalen Suspensionen. PhD thesis, Technische Universität Dresden, 2010. urn: nbn:de:bsz:14-qucosa-65050

  • R. Pelton, X. Geng, M. Brook, Photocatalytic paper from colloidal TiO2—fact or fantasy. Adv. Colloid Interface Sci. 127(1), 43–53 (2006). doi:10.1016/j.cis.2006.08.002

    Article  Google Scholar 

  • V. Ramakrishnan, Pradip, S.G. Malghan, The stability of alumina-zirconia suspensions. Colloids Surf., A, 133(1–2):135–142 (1998). doi:10.1016/S0927-7757(97)00135-0

    Google Scholar 

  • M. Raşa, A.P. Philipse, J.D. Meeldijk, Heteroaggregation, repeptization and stability in mixtures of oppositely charged colloids. J. Colloid Interface Sci. 278(1), 115–125 (2004). doi:10.1016/j.jcis.2004.05.020

    Google Scholar 

  • D.R.E. Snoswell, T.J. Rogers, A.M. Howe, B. Vincent, Controlling porosity within colloidal heteroaggregates. Langmuir 21(24), 11439–11445 (2005a). doi:10.1021/la051957o

    Article  Google Scholar 

  • D.R.E. Snoswell, J. Duan, D. Fornasiero, J. Ralston, The selective aggregation and separation of titania from a mixed suspension of silica and titania. Int. J. Miner. Process. 78(1), 1–10 (2005b). doi:10.1016/j.minpro.2005.07.001

    Article  Google Scholar 

  • J. Sun, B.V. Velamakanni, W.W. Gerberich, L.F. Francis, Aqueous latex/ceramic nanoparticle dispersions: colloidal stability and coating properties. J. Colloid Interface Sci. 280(2), 387–399 (2004). doi:10.1016/j.jcis.2004.08.014

    Article  Google Scholar 

  • P. Viravathana, D.W.M. Marr, Optical trapping of titania/silica core-shell colloidal particles. J. Colloid Interface Sci. 221(2), 301–307 (2000). doi:10.1006/jcis.1999.6603

    Article  Google Scholar 

  • G.R. Wiese, T.W. Healy, Heterocoagulation in mixed TiO2–Al2O3 dispersions. J. Colloid Interface Sci. 52(3), 458–467 (1975). doi:10.1016/0021-9797(75)90271-4

    Article  Google Scholar 

  • P.D. Yates, G.V. Franks, S. Biggs, G.J. Jameson, Heteroaggregation with nanoparticles: effect of particle size ratio on optimum particle dose. Colloids Surf. A 255(1–3), 85–90 (2005). doi:10.1016/j.colsurfa.2004.12.035

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Babick .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babick, F. (2016). Dispersion of Colloidal Suspensions and Their Stability. In: Suspensions of Colloidal Particles and Aggregates. Particle Technology Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-30663-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30663-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30661-2

  • Online ISBN: 978-3-319-30663-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics