Skip to main content

Approaches to Inactivate Genes in Zebrafish

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Animal models of tumor initiation and tumor progression are essential components toward understanding cancer and designing/validating future therapies. Zebrafish is a powerful model for studying tumorigenesis and has been successfully exploited in drug discovery. According to the zebrafish reference genome, 82 % of disease-associated genes in the Online Mendelian Inheritance in Man (OMIM) database have clear zebrafish orthologues. Using a variety of large-scale random mutagenesis methods developed to date, zebrafish can provide a unique opportunity to identify gene mutations that may be associated with cancer predisposition. On the other hand, newer technologies enabling targeted mutagenesis can facilitate reverse cancer genetic studies and open the door for complex genetic analysis of tumorigenesis. In this chapter, we will describe the various technologies for conducting genome editing in zebrafish with special emphasis on the approaches to inactivate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4:189–202

    Article  CAS  PubMed  Google Scholar 

  2. Kroeger PT Jr, Poureetezadi SJ, McKee R, Jou J, Miceli R, Wingert RA (2014) Production of haploid zebrafish embryos by in vitro fertilization. J Vis Exp

    Google Scholar 

  3. Walker C (1999) Haploid screens and gamma-ray mutagenesis. Methods Cell Biol 60:43–70

    Article  CAS  PubMed  Google Scholar 

  4. Streisinger G, Singer F, Walker C, Knauber D, Dower N (1986) Segregation analyses and gene-centromere distances in zebrafish. Genetics 112:311–319

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shepard JL, Amatruda JF, Stern HM, Subramanian A, Finkelstein D, Ziai J, Finley KR, Pfaff KL, Hersey C, Zhou Y et al (2005) A zebrafish bmyb mutation causes genome instability and increased cancer susceptibility. Proc Natl Acad Sci U S A 102:13194–13199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shepard JL, Amatruda JF, Finkelstein D, Ziai J, Finley KR, Stern HM, Chiang K, Hersey C, Barut B, Freeman JL et al (2007) A mutation in separase causes genome instability and increased susceptibility to epithelial cancer. Genes Dev 21:55–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parant JM, George SA, Holden JA, Yost HJ (2010) Genetic modeling of Li-Fraumeni syndrome in zebrafish. Dis Model Mech 3:45–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moore JL, Rush LM, Breneman C, Mohideen MA, Cheng KC (2006) Zebrafish genomic instability mutants and cancer susceptibility. Genetics 174:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neumann JC, Chandler GL, Damoulis VA, Fustino NJ, Lillard K, Looijenga L, Margraf L, Rakheja D, Amatruda JF (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 108:13153–13158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaiano N, Amsterdam A, Kawakami K, Allende M, Becker T, Hopkins N (1996) Insertional mutagenesis and rapid cloning of essential genes in zebrafish. Nature 383:829–832

    Article  CAS  PubMed  Google Scholar 

  11. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci U S A 101:12792–12797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang D, Jao LE, Zheng N, Dolan K, Ivey J, Zonies S, Wu X, Wu K, Yang H, Meng Q et al (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proc Natl Acad Sci U S A 104:12428–12433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Varshney GK, Lu J, Gildea DE, Huang H, Pei W, Yang Z, Huang SC, Schoenfeld D, Pho NH, Casero D et al (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome Res 23:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Varshney GK, Huang H, Zhang S, Lu J, Gildea DE, Yang Z, Wolfsberg TG, Lin S, Burgess SM (2013) The Zebrafish Insertion Collection (ZInC): a web based, searchable collection of zebrafish mutations generated by DNA insertion. Nucleic Acids Res 41:D861–D864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teng T, Thomas G, Mercer CA (2013) Growth control and ribosomopathies. Curr Opin Genet Dev 23:63–71

    Article  CAS  PubMed  Google Scholar 

  16. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97:11403–11408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263:191–202

    Article  CAS  PubMed  Google Scholar 

  18. Kawakami K, Takeda H, Kawakami N, Kobayashi M, Matsuda N, Mishina M (2004) A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7:133–144

    Article  CAS  PubMed  Google Scholar 

  19. Balciunas D, Ekker SC (2005) Trapping fish genes with transposons. Zebrafish 1:335–341

    Article  PubMed  Google Scholar 

  20. Sivasubbu S, Balciunas D, Davidson AE, Pickart MA, Hermanson SB, Wangensteen KJ, Wolbrink DC, Ekker SC (2006) Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech Dev 123:513–529

    Article  CAS  PubMed  Google Scholar 

  21. Clark KJ, Balciunas D, Pogoda HM, Ding Y, Westcot SE, Bedell VM, Greenwood TM, Urban MD, Skuster KJ, Petzold AM et al (2011) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8:506–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ni TT, Lu J, Zhu M, Maddison LA, Boyd KL, Huskey L, Ju B, Hesselson D, Zhong TP, Page-McCaw PS et al (2012) Conditional control of gene function by an invertible gene trap in zebrafish. Proc Natl Acad Sci U S A 109:15389–15394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petzold AM, Balciunas D, Sivasubbu S, Clark KJ, Bedell VM, Westcot SE, Myers SR, Moulder GL, Thomas MJ, Ekker SC (2009) Nicotine response genetics in the zebrafish. Proc Natl Acad Sci U S A 106:18662–18667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102

    Article  CAS  PubMed  Google Scholar 

  27. Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ et al (2013) A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 496:494–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP et al (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haramis AP, Hurlstone A, van der Velden Y, Begthel H, van den Born M, Offerhaus GJ, Clevers HC (2006) Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia. EMBO Rep 7:444–449

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wienholds E, Koudijs MJ, van Eeden FJ, Cuppen E, Plasterk RH (2003) The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat Genet 35:217–218

    Article  CAS  PubMed  Google Scholar 

  32. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW (1998) Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39

    Article  CAS  PubMed  Google Scholar 

  33. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    Article  PubMed  Google Scholar 

  34. Faucherre A, Taylor GS, Overvoorde J, Dixon JE, Hertog J (2008) Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development. Oncogene 27:1079–1086

    Article  CAS  PubMed  Google Scholar 

  35. Berends MJ, Wu Y, Sijmons RH, Mensink RG, van der Sluis T, Hordijk-Hos JM, de Vries EG, Hollema H, Karrenbeld A, Buys CH et al (2002) Molecular and clinical characteristics of MSH6 variants: an analysis of 25 index carriers of a germline variant. Am J Hum Genet 70:26–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Akiyama Y, Sato H, Yamada T, Nagasaki H, Tsuchiya A, Abe R, Yuasa Y (1997) Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57:3920–3923

    CAS  PubMed  Google Scholar 

  37. Papadopoulos N, Nicolaides NC, Wei YF, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629

    Article  CAS  PubMed  Google Scholar 

  38. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261

    Article  CAS  PubMed  Google Scholar 

  39. Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225

    Article  CAS  PubMed  Google Scholar 

  40. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038

    Article  CAS  PubMed  Google Scholar 

  41. Feitsma H, Kuiper RV, Korving J, Nijman IJ, Cuppen E (2008) Zebrafish with mutations in mismatch repair genes develop neurofibromas and other tumors. Cancer Res 68:5059–5066

    Article  CAS  PubMed  Google Scholar 

  42. Kelly A, Hurlstone AF (2011) The use of RNAi technologies for gene knockdown in zebrafish. Brief Funct Genomics 10:189–196

    Article  CAS  PubMed  Google Scholar 

  43. Dong M, Fu YF, Du TT, Jing CB, Fu CT, Chen Y, Jin Y, Deng M, Liu TX (2009) Heritable and lineage-specific gene knockdown in zebrafish embryo. PLoS One 4, e6125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. De Rienzo G, Gutzman JH, Sive H (2012) Efficient shRNA-mediated inhibition of gene expression in zebrafish. Zebrafish 9:97–107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 105:19821–19826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ et al (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4, e4348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL et al (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC et al (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 105:5809–5814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moehle EA, Rock JM, Lee YL, Jouvenot Y, DeKelver RC, Gregory PD, Urnov FD, Holmes MC (2007) Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. Proc Natl Acad Sci U S A 104:3055–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD et al (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    Article  CAS  PubMed  Google Scholar 

  54. Hagmann M, Bruggmann R, Xue L, Georgiev O, Schaffner W, Rungger D, Spaniol P, Gerster T (1998) Homologous recombination and DNA-end joining reactions in zygotes and early embryos of zebrafish (Danio rerio) and Drosophila melanogaster. Biol Chem 379: 673–681

    Article  CAS  PubMed  Google Scholar 

  55. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10:957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11:636–646

    Article  CAS  PubMed  Google Scholar 

  59. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Miller J, McLachlan AD, Klug A (1985) Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. EMBO J 4:1609–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  CAS  PubMed  Google Scholar 

  62. Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28:3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S (2005) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334:1191–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Doyon Y, Vo TD, Mendel MC, Greenberg SG, Wang J, Xia DF, Miller JC, Urnov FD, Gregory PD, Holmes MC (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    Article  CAS  PubMed  Google Scholar 

  66. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ, Cathomen T (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    Article  CAS  PubMed  Google Scholar 

  67. Guo J, Gaj T, Barbas CF 3rd (2010) Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol 400:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dreier B, Segal DJ, Barbas CF 3rd (2000) Insights into the molecular recognition of the 5′-GNN-3′ family of DNA sequences by zinc finger domains. J Mol Biol 303:489–502

    Article  CAS  PubMed  Google Scholar 

  69. Rebar EJ, Pabo CO (1994) Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673

    Article  CAS  PubMed  Google Scholar 

  70. Jamieson AC, Kim SH, Wells JA (1994) In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33:5689–5695

    Article  CAS  PubMed  Google Scholar 

  71. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gupta A, Christensen RG, Rayla AL, Lakshmanan A, Stormo GD, Wolfe SA (2012) An optimized two-finger archive for ZFN-mediated gene targeting. Nat Methods 9:588–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sander JD, Yeh JR, Peterson RT, Joung JK (2011) Engineering zinc finger nucleases for targeted mutagenesis of zebrafish. Methods Cell Biol 104:51–58

    Article  CAS  PubMed  Google Scholar 

  75. Chen S, Oikonomou G, Chiu CN, Niles BJ, Liu J, Lee DA, Antoshechkin I, Prober DA (2013) A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly. Nucleic Acids Res 41:2769–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA (2011) Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases. Nucleic Acids Res 39:381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ramirez CL, Foley JE, Wright DA, Muller-Lerch F, Rahman SH, Cornu TI, Winfrey RJ, Sander JD, Fu F, Townsend JA et al (2008) Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods 5:374–375

    Article  CAS  PubMed  Google Scholar 

  78. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  CAS  PubMed  Google Scholar 

  79. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    Article  CAS  PubMed  Google Scholar 

  80. Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR (2012) Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 40:8001–8010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kandavelou K, Chandrasegaran S (2009) Custom-designed molecular scissors for site-specific manipulation of the plant and mammalian genomes. Methods Mol Biol 544:617–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S, Santiago Y, Vincent AI, Meng X, Zhang L et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29:695–696

    Article  CAS  PubMed  Google Scholar 

  85. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    Article  CAS  PubMed  Google Scholar 

  86. Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B (2011) Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29:699–700

    Article  PubMed  CAS  Google Scholar 

  87. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wood AJ, Lo TW, Zeitler B, Pickle CS, Ralston EJ, Lee AH, Amora R, Miller JC, Leung E, Meng X et al (2011) Targeted genome editing across species using ZFNs and TALENs. Science 333:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG 2nd, Tan W, Penheiter SG, Ma AC, Leung AY et al (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39, e82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ (2012) Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 8, e1002861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carlson DF, Tan W, Lillico SG, Stverakova D, Proudfoot C, Christian M, Voytas DF, Long CR, Whitelaw CB, Fahrenkrug SC (2012) Efficient TALEN-mediated gene knockout in livestock. Proc Natl Acad Sci U S A 109:17382–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109:17484–17489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pillay LM, Selland LG, Fleisch VC, Leighton PL, Cheng CS, Famulski JK, Ritzel RG, March LD, Wang H, Allison WT et al (2013) Evaluating the mutagenic activity of targeted endonucleases containing a Sharkey FokI cleavage domain variant in zebrafish. Zebrafish 10:353–364

    Article  CAS  PubMed  Google Scholar 

  95. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S et al (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q et al (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Method

    Google Scholar 

  97. Pennisi E (2013) The CRISPR craze. Science 341:833–836

    Article  CAS  PubMed  Google Scholar 

  98. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  99. Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  PubMed  Google Scholar 

  101. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  102. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31:230–232

    Article  CAS  PubMed  Google Scholar 

  103. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31:227–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  109. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41, e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z, Zhang X, Zhang P, Huang X (2013) Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res 23:720–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X et al (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31:681–683

    Article  CAS  PubMed  Google Scholar 

  113. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G (2013) Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 195:289–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li W, Teng F, Li T, Zhou Q (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31:684–686

    Article  CAS  PubMed  Google Scholar 

  117. Tan W, Carlson DF, Lancto CA, Garbe JR, Webster DA, Hackett PB, Fahrenkrug SC (2013) Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc Natl Acad Sci U S A 110:16526–16531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva IA, Chen C (2014) Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9, e106718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hai T, Teng F, Guo R, Li W, Zhou Q (2014) One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 24:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Jacobs JZ, Ciccaglione KM, Tournier V, Zaratiegui M (2014) Implementation of the CRISPR-Cas9 system in fission yeast. Nat Commun 5:5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gonzales AP, Yeh JR (2014) Cas9-based genome editing in zebrafish. Methods Enzymol 546:377–413

    Article  PubMed  Google Scholar 

  122. Hwang WY, Fu Y, Reyon D, Maeder ML, Kaini P, Sander JD, Joung JK, Peterson RT, Yeh JR (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8, e68708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A 110:13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gagnon JA, Valen E, Thyme SB, Huang P, Ahkmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Thomas HR, Percival SM, Yoder BK, Parant JM (2014) High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One 9, e114632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514:380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sanchez-Rivera FJ, Papagiannakopoulos T, Romero R, Tammela T, Bauer MR, Bhutkar A, Joshi NS, Subbaraj L, Bronson RT, Xue W et al (2014) Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516:428–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tawk M, Bianco IH, Clarke JD (2009) Focal electroporation in zebrafish embryos and larvae. Methods Mol Biol 546:145–151

    Article  CAS  PubMed  Google Scholar 

  130. Rao NM, Rambabu KM, Rao SH (2008) Electroporation of adult zebrafish. Methods Mol Biol 423:289–298

    Article  CAS  PubMed  Google Scholar 

  131. Kizil C, Brand M (2011) Cerebroventricular microinjection (CVMI) into adult zebrafish brain is an efficient misexpression method for forebrain ventricular cells. PLoS One 6, e27395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Holmes KE, Wyatt MJ, Shen YC, Thompson DA, Barald KF (2011) Direct delivery of MIF morpholinos into the zebrafish otocyst by injection and electroporation affects inner ear development. J Vis Exp

    Google Scholar 

  133. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN et al (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11:821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Blackburn JS, Langenau DM (2014) Zebrafish as a model to assess cancer heterogeneity, progression and relapse. Dis Model Mech 7:755–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y et al (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154:1380–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M, Kosuri S, Yang L, Church GM (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31:833–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol 32:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guilinger JP, Thompson DB, Liu DR (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32:577–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  CAS  PubMed  Google Scholar 

  143. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441

    Article  CAS  PubMed  Google Scholar 

  144. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    Article  CAS  PubMed  Google Scholar 

  145. Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  146. Shin J, Chen J, Solnica-Krezel L (2014) Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development 141:3807–3818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Irion U, Krauss J, Nusslein-Volhard C (2014) Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. Development 141:4827–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hruscha A, Krawitz P, Rechenberg A, Heinrich V, Hecht J, Haass C, Schmid B (2013) Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development 140:4982–4987

    Article  CAS  PubMed  Google Scholar 

  149. Auer TO, Duroure K, Concordet JP, Del Bene F (2014) CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nat Protoc 9:2823–2840

    Article  CAS  PubMed  Google Scholar 

  150. Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F (2014) Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res 24:142–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND, Wolfe SA (2013) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23:1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z, Zu Y, Li W, Huang P, Tong X et al (2013) Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res 41, e141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Institutes of Health (J.-R. J. Yeh, GM088040 and CA140188; J. M. Parant, NS092105) and the Hassenfeld Scholar’s Award (J.-R. J. Yeh).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John M. Parant or Jing-Ruey Joanna Yeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Parant, J.M., Yeh, JR.J. (2016). Approaches to Inactivate Genes in Zebrafish. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_3

Download citation

Publish with us

Policies and ethics