Skip to main content

Zebrafish Melanoma

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Melanoma skin cancer is a potentially deadly disease in humans and has remained extremely difficult to treat once it has metastasized. In just the last 10 years, a number of models of melanoma have been developed in the zebrafish that are biologically faithful to the human disease and have already yielded important insights into the fundamental biology of melanoma and offered new potential avenues for treatment. With the diversity and breadth of the molecular genetic tools available in the zebrafish, these melanoma models will continue to be refined and expanded upon to keep pace with the rapidly evolving field of melanoma biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balch CM et al (2009) Final Version of 2009 AJCC Melanoma Staging and Classification. J Clin Oncol 27:6199–6206

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lo JA, Fisher DE (2014) The melanoma revolution: from UV carcinogenesis to a new era in therapeutics. Science 346:945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Epstein FH, Gilchrest BA, Eller MS, Geller AC, Yaar M (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 340:1341–1348

    Article  Google Scholar 

  4. Viros A et al (2014) Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 511:478–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Whiteman DC, Whiteman CA, Green AC (2001) Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies – Springer. Cancer Causes Control 12:69–82

    Article  CAS  PubMed  Google Scholar 

  6. Garbe C et al (1994) Risk factors for developing cutaneous melanoma and criteria for identifying persons at risk: multicenter case–control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J Invest Dermatol 102:695–699

    Article  CAS  PubMed  Google Scholar 

  7. Hodis E et al (2012) A landscape of driver mutations in melanoma. Cell 150:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lawrence MS et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161:1681–1696

    Article  Google Scholar 

  10. Serrone L, Zeuli M, Sega FM, Cognetti F (2000) Dacarbazine-based chemotherapy for metastatic melanoma: thirty-year experience overview. J Exp Clin Cancer Res 19:21–34

    CAS  PubMed  Google Scholar 

  11. Rosenberg SA et al (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271:907–913

    Article  CAS  PubMed  Google Scholar 

  12. Chapman PB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. doi:10.1056/NEJMoa1103782

    Google Scholar 

  13. Hauschild A et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  CAS  PubMed  Google Scholar 

  14. Flaherty KT et al (2012) Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. doi:10.1056/NEJMoa1203421

    Google Scholar 

  15. Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. doi:10.1056/NEJMoa1104621

    Google Scholar 

  16. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532. doi:10.1056/NEJMoa1503093

    Google Scholar 

  18. Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAFMutation. N Engl J Med 372:320–330. doi:10.1056/NEJMoa1412082

    Google Scholar 

  19. Postow MA et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017. doi:10.1056/NEJMoa1414428

    Google Scholar 

  20. Patton EE et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15:249–254

    Article  CAS  PubMed  Google Scholar 

  21. Tuveson DA, Weber BL, Herlyn M (2003) BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell 4:95–98

    Article  CAS  PubMed  Google Scholar 

  22. Ceol CJ et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. White RM et al (2011) DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471:518–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lian CG et al (2012) Loss of 5-hydroxymethylcytosine is an epigenetic hallmark of melanoma. Cell 150:1135–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lister JA et al (2013) A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression in vivo. J Investig Dermatol. doi:10.1038/jid.2013.293

    PubMed  PubMed Central  Google Scholar 

  26. Dovey M, White R, Zon L (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6:397–404

    Google Scholar 

  27. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santoriello C et al (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5, e15170

    Article  PubMed  PubMed Central  Google Scholar 

  29. Parichy DM, Rawls JF, Pratt SJ, Whitfield TT, Johnson SL (1999) Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. Development 126:3425–3436

    CAS  PubMed  Google Scholar 

  30. Santoriello C, Anelli V, Alghisi E, Mione M (2012) Highly penetrant melanoma in a zebrafish model is independent of ErbB3b signaling. Pigment Cell Melanoma Res 25:287–289

    Article  CAS  PubMed  Google Scholar 

  31. Rubinstein AL, Lee D, Luo R, Henion PD, Halpern ME (2000) Genes dependent on zebrafish cyclops function identified by AFLP differential gene expression screen. Genesis 26:86–97

    Article  CAS  PubMed  Google Scholar 

  32. Luo R, An M, Arduini BL, Henion PD (2001) Specific pan-neural crest expression of zebrafish Crestin throughout embryonic development. Dev Dyn 220:169–174

    Article  CAS  PubMed  Google Scholar 

  33. Goding CR (2011) A picture of Mitf in melanoma immortality. Oncogene 30:2304–2306

    Article  CAS  PubMed  Google Scholar 

  34. Zeng Z, Johnson SL, Lister JA, Patton EE (2015) Temperature-sensitive splicing of mitfa by an intron mutation in zebrafish. Pigment Cell Melanoma Res 28:229–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yen J et al (2013) The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biol 14:R113

    Article  PubMed  PubMed Central  Google Scholar 

  36. Van Raamsdonk CD et al (2008) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457:599–602

    Article  PubMed  PubMed Central  Google Scholar 

  37. Van Raamsdonk CD et al (2010) Mutations in GNA11in uveal melanoma. N Engl J Med 363:2191–2199

    Article  PubMed  PubMed Central  Google Scholar 

  38. Curtin JA, Busam K, Pinkel D, Bastian BC (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24:4340–4346

    Article  CAS  PubMed  Google Scholar 

  39. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. doi:10.1016/j.devcel.2015.01.032

    PubMed  PubMed Central  Google Scholar 

  40. Gagnon JA et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS One 9, e98186

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hwang WY et al (2013) Heritable and precise zebrafish genome editing using a CRISPR-Cas system. PLoS One 8, e68708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Larkin J et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373:1270–1271. doi:10.1056/NEJMoa1504030

    Google Scholar 

  43. White RM et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang Q et al (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods. doi:10.1038/nmeth.3031

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles K. Kaufman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kaufman, C.K. (2016). Zebrafish Melanoma. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_19

Download citation

Publish with us

Policies and ethics