Skip to main content

Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

4HT:

4-hydroxytamoxifen

ALL:

Acute lymphoblastic leukemia

AML:

Acute myeloid leukemia

B-ALL:

B-cell acute lymphoblastic leukemia

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myeloid leukemia

CRISPR/Cas9:

Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9

dpf:

Days post fertilization

EGFP:

Enhanced green fluorescent protein

ENU:

N-ethyl-N-nitrosourea

GFP:

Green fluorescent protein

GMP:

Granulocyte/macrophage progenitors

HOXA9:

Homeobox A9

HSCs:

Hematopoietic stem cells

HSCT:

Hematopoietic stem cell transplantation

ICN1:

Intracellular portion of human NOTCH1

LED:

Light emitting diode

LP:

Lymphoid progenitor (cells)

LPC:

Leukemia-propagating cells

LSCM:

Laser scanning fluorescent confocal microscopy

MDS:

Myelodysplastic syndrome

MEP:

Megakaryocyte-erythrocyte progenitors

MP:

Myeloid progenitor (cells)

MPN:

Myeloproliferative neoplasm

NUP98:

Nucleoporin 98 kDa

PP2A:

Protein phosphatase 2

Pro-B:

Pro-B-lymphocytes

Pro-T:

Pro-T-lymphocytes

RFP:

Red fluorescent protein

S1P1:

Singhosine-1 phosphate receptor 1

SDCM:

Spinning disc confocal microscopy

TALENs:

Transcription activator-like effector nucleases

T-ALL:

T-cell acute lymphoblastic leukemia

TET2:

Tet methylcytosine dioxygenase 2

TILLING:

Targeting induced local lesions IN Genomes

T-LBL:

T-cell acute lymphoblastic lymphoma

ZFNs:

Zinc finger nucleases

References

  1. Cancer Facts & Figures (2014). American Cancer Society, Atlanta, Georgia

    Google Scholar 

  2. Seiter K (2014) ALL. Acute Lymphoblastic Leukemia – Medscape Reference, vol 2014

    Google Scholar 

  3. Seiter K (2014) AML. Acute Myelogenous Leukemia – Medscape Reference, vol 2014

    Google Scholar 

  4. Van Vlierberghe P, Ferrando A (2012) The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 122(10):3398–3406. doi:10.1172/JCI61269

    Google Scholar 

  5. Takeuchi S, Koike M, Seriu T, Bartram CR, Slater J, Park S, Miyoshi I, Koeffler HP (1997) Homozygous deletions at 9p21 in childhood acute lymphoblastic leukemia detected by microsatellite analysis. Leukemia 11(10):1636–1640

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network (2013) Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368(22):2059–2074. doi:10.1056/NEJMoa1301689

  7. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K, Werner L, Sivachenko A, DeLuca DS, Zhang L, Zhang W, Vartanov AR, Fernandes SM, Goldstein NR, Folco EG, Cibulskis K, Tesar B, Sievers QL, Shefler E, Gabriel S, Hacohen N, Reed R, Meyerson M, Golub TR, Lander ES, Neuberg D, Brown JR, Getz G, Wu CJ (2011) SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 365(26):2497–2506. doi:10.1056/NEJMoa1109016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martin-Subero JI, Lopez-Otin C, Campo E (2013) Genetic and epigenetic basis of chronic lymphocytic leukemia. Curr Opin Hematol 20(4):362–368. doi:10.1097/MOH.0b013e32836235dc

    Google Scholar 

  9. Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F, Malcikova J, Anagnostopoulos A, Glide S, Mould S, Stepanovska K, Brejcha M, Belessi C, Davi F, Pospisilova S, Athanasiadou A, Stamatopoulos K, Oscier D (2014) Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol 89(3):249–255. doi:10.1002/ajh.23618

    Article  CAS  PubMed  Google Scholar 

  10. Johansson B, Fioretos T, Mitelman F (2002) Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol 107(2):76–94

    Article  CAS  PubMed  Google Scholar 

  11. Rumpold H, Webersinke G (2011) Molecular pathogenesis of Philadelphia-positive chronic myeloid leukemia – is it all BCR-ABL? Curr Cancer Drug Targets 11(1):3–19

    Article  CAS  PubMed  Google Scholar 

  12. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau MM, Pui CH, Relling MV, Shurtleff SA, Downing JR (2008) BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 453(7191):110–114. doi:10.1038/nature06866

    Google Scholar 

  13. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271. doi:10.1126/science.1102160

    Article  CAS  PubMed  Google Scholar 

  14. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, Draetta G, Sears R, Clurman BE, Look AT (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204(8):1813–1824. doi:10.1084/jem.20070876

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A, Aifantis I (2007) The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204(8):1825–1835. doi:10.1084/jem.20070872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mullighan CG (2012) Molecular genetics of B-precursor acute lymphoblastic leukemia. J Clin Invest 122(10):3407–3415. doi:10.1172/JCI61203

    Google Scholar 

  17. Marcucci G, Haferlach T, Dohner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29(5):475–486. doi:10.1200/JCO.2010.30.2554

    Google Scholar 

  18. Chung SS (2014) Genetic mutations in acute myeloid leukemia that influence clinical decisions. Curr Opin Hematol 21(2):87–94. doi:10.1097/MOH.0000000000000024

    Google Scholar 

  19. Quesada V, Ramsay AJ, Lopez-Otin C (2012) Chronic lymphocytic leukemia with SF3B1 mutation. N Engl J Med 366(26):2530. doi:10.1056/NEJMc1204033

    Article  CAS  PubMed  Google Scholar 

  20. Landau DA, Stewart C, Reiter JG, Lawrence M, Sougnez C, Brown JR, Lopez-Guillermo A, Gabriel S, Lander E, Neuberg DS, Lopez-Otin C, Campo E, Getz G, Wu CJ (2014) Novel putative driver gene mutations in chronic lymphocytic leukemia (CLL): results from a combined analysis of whole-exome sequencing of 262 primary CLL samples. Blood 124(21):1952–1952

    Google Scholar 

  21. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340(17):1330–1340. doi:10.1056/NEJM199904293401706

    Google Scholar 

  22. Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341(3):164–172. doi:10.1056/NEJM199907153410306

    Google Scholar 

  23. Quintas-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113(8):1619–1630. doi:10.1182/blood-2008-03-144790

    Google Scholar 

  24. Besa EC (2014) CML. Chronic Myelogenous Leukemia – Medscape Reference, vol 2014

    Google Scholar 

  25. Hosen N, Maeda T, Hashii Y, Tsuboi A, Nishida S, Nakata J, Nakae Y, Takashima S, Oji Y, Oka Y, Kumanogoh A, Sugiyama H (2014) Vaccination strategies to improve outcome of hematopoietic stem cell transplant in leukemia patients: early evidence and future prospects. Expert Rev Hematol 7(5):671–681. doi:10.1586/17474086.2014.953925

    Google Scholar 

  26. Ai J, Advani A (2014) Current status of antibody therapy in ALL. Br J Haematol 168:471–480. doi:10.1111/bjh.13205

    Article  PubMed  CAS  Google Scholar 

  27. Balducci L (2001) The geriatric cancer patient: equal benefit from equal treatment. Cancer Control 8(2 Suppl):1–25, quiz 27–28

    CAS  PubMed  Google Scholar 

  28. Breslin S (2007) Cytokine-release syndrome: overview and nursing implications. Clin J Oncol Nurs 11(1 Suppl):37–42. doi:10.1188/07.CJON.S1.37-42

    Article  PubMed  Google Scholar 

  29. Mavroudis D, Barrett J (1996) The graft-versus-leukemia effect. Curr Opin Hematol 3(6):423–429

    Article  CAS  PubMed  Google Scholar 

  30. Rezvani AR, Storb RF (2008) Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun 30(3):172–179. doi:10.1016/j.jaut.2007.12.002

    Google Scholar 

  31. Wayne AS, Fitzgerald DJ, Kreitman RJ, Pastan I (2014) Immunotoxins for leukemia. Blood 123(16):2470–2477. doi:10.1182/blood-2014-01-492256

    Google Scholar 

  32. Burkhardt UE, Hainz U, Stevenson K, Goldstein NR, Pasek M, Naito M, Wu D, Ho VT, Alonso A, Hammond NN, Wong J, Sievers QL, Brusic A, McDonough SM, Zeng W, Perrin A, Brown JR, Canning CM, Koreth J, Cutler C, Armand P, Neuberg D, Lee JS, Antin JH, Mulligan RC, Sasada T, Ritz J, Soiffer RJ, Dranoff G, Alyea EP, Wu CJ (2013) Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. J Clin Invest 123(9):3756–3765. doi:10.1172/JCI69098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. CAR T-Cell Therapy: Engineering Patients’ Immune Cells to Treat Their Cancers. (2014) National Cancer Institute. Accessed Web Page 2014

    Google Scholar 

  34. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365(8):725–733. doi:10.1056/NEJMoa1103849

    Google Scholar 

  35. Carella AM, Branford S, Deininger M, Mahon FX, Saglio G, Eiring A, Khorashad J, O’Hare T, Goldman JM (2013) What challenges remain in chronic myeloid leukemia research? Haematologica 98(8):1168–1172. doi:10.3324/haematol.2013.090381

    Google Scholar 

  36. Qin L, Smith BD, Tsai HL, Yaghi NK, Neela PH, Moake M, Fu J, Kasamon YL, Prince GT, Goswami M, Rosner GL, Levitsky HI, Hourigan CS (2013) Induction of high-titer IgG antibodies against multiple leukemia-associated antigens in CML patients with clinical responses to K562/GVAX immunotherapy. Blood Cancer J 3:e145. doi:10.1038/bcj.2013.44

    Google Scholar 

  37. Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23(43):7233–7246. doi:10.1038/sj.onc.1207943

    Google Scholar 

  38. Detrich HW 3rd, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI (1995) Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci U S A 92(23):10713–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu S, Leach SD (2011) Zebrafish models for cancer. Annu Rev Pathol 6:71–93. doi:10.1146/annurev-pathol-011110-130330

    Google Scholar 

  40. Bertrand JY, Traver D (2009) Hematopoietic cell development in the zebrafish embryo. Curr Opin Hematol 16(4):243–248. doi:10.1097/MOH.0b013e32832c05e4

    Article  CAS  PubMed  Google Scholar 

  41. Ellett F, Lieschke GJ (2010) Zebrafish as a model for vertebrate hematopoiesis. Curr Opin Pharmacol 10(5):563–570. doi:10.1016/j.coph.2010.05.004

    Article  CAS  PubMed  Google Scholar 

  42. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464(7285):108–111. doi:10.1038/nature08738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464(7285):112–115. doi:10.1038/nature08761

    Article  CAS  PubMed  Google Scholar 

  44. Colle-Vandevelde A (1963) Blood anlage in teleostei. Nature 198:1223

    Article  CAS  PubMed  Google Scholar 

  45. Carroll KJ, North TE (2014) Oceans of opportunity: exploring vertebrate hematopoiesis in zebrafish. Exp Hematol 42(8):684–696. doi:10.1016/j.exphem.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paik EJ, Zon LI (2010) Hematopoietic development in the zebrafish. Int J Dev Biol 54(6–7):1127–1137. doi:10.1387/ijdb.093042ep

    Article  CAS  PubMed  Google Scholar 

  47. Zhang C, Patient R, Liu F (2013) Hematopoietic stem cell development and regulatory signaling in zebrafish. Biochim Biophys Acta 1830(2):2370–2374. doi:10.1016/j.bbagen.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  48. Crowhurst MO, Layton JE, Lieschke GJ (2002) Developmental biology of zebrafish myeloid cells. Int J Dev Biol 46(4):483–492

    CAS  PubMed  Google Scholar 

  49. Hsu K, Traver D, Kutok JL, Hagen A, Liu TX, Paw BH, Rhodes J, Berman JN, Zon LI, Kanki JP, Look AT (2004) The pu.1 promoter drives myeloid gene expression in zebrafish. Blood 104(5):1291–1297. doi:10.1182/blood-2003-09-3105

    Article  CAS  PubMed  Google Scholar 

  50. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, Kanki JP (2005) Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 8(1):97–108. doi:10.1016/j.devcel.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  51. Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248(4962):1517–1523

    Article  CAS  PubMed  Google Scholar 

  52. Yaqoob N, Holotta M, Prem C, Kopp R, Schwerte T (2009) Ontogenetic development of erythropoiesis can be studied non-invasively in GATA-1:DsRed transgenic zebrafish. Comp Biochem Physiol A Mol Integr Physiol 154(2):270–278. doi:10.1016/j.cbpa.2009.06.024

    Article  PubMed  CAS  Google Scholar 

  53. Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A (2006) Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol 80(6):1281–1288. doi:10.1189/jlb.0506346

    Article  CAS  PubMed  Google Scholar 

  54. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117(4):e49–e56. doi:10.1182/blood-2010-10-314120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 101(19):7369–7374. doi:10.1073/pnas.0402248101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jessen JR, Jessen TN, Vogel SS, Lin S (2001) Concurrent expression of recombination activating genes 1 and 2 in zebrafish olfactory sensory neurons. Genesis 29(4):156–162

    Article  CAS  PubMed  Google Scholar 

  57. Jessen JR, Willett CE, Lin S (1999) Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish. Nat Genet 23(1):15–16. doi:10.1038/12609

    Article  CAS  PubMed  Google Scholar 

  58. Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, Handin RI (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106(12):3803–3810. doi:10.1182/blood-2005-01-0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma D, Zhang J, Lin HF, Italiano J, Handin RI (2011) The identification and characterization of zebrafish hematopoietic stem cells. Blood 118(2):289–297. doi:10.1182/blood-2010-12-327403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189. doi:10.1016/j.stem.2007.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawakami K (2004) Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element. Methods Cell Biol 77:201–222

    Article  CAS  PubMed  Google Scholar 

  62. Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) I-SceI meganuclease mediates highly efficient transgenesis in fish. Mech Dev 118(1–2):91–98

    Article  CAS  PubMed  Google Scholar 

  63. Gutierrez A, Grebliunaite R, Feng H, Kozakewich E, Zhu S, Guo F, Payne E, Mansour M, Dahlberg SE, Neuberg DS, den Hertog J, Prochownik EV, Testa JR, Harris M, Kanki JP, Look AT (2011) Pten mediates Myc oncogene dependence in a conditional zebrafish model of T cell acute lymphoblastic leukemia. J Exp Med 208(8):1595–1603. doi:10.1084/jem.20101691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 102(17):6068–6073. doi:10.1073/pnas.0408708102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scheer N, Campos-Ortega JA (1999) Use of the Gal4-UAS technique for targeted gene expression in the zebrafish. Mech Dev 80(2):153–158

    Article  CAS  PubMed  Google Scholar 

  66. Zheng W, Li Z, Nguyen AT, Li C, Emelyanov A, Gong Z (2014) Xmrk, kras and myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma. PLoS One 9(3), e91179. doi:10.1371/journal.pone.0091179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rembold M, Lahiri K, Foulkes NS, Wittbrodt J (2006) Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat Protoc 1(3):1133–1139. doi:10.1038/nprot.2006.165

    Article  CAS  PubMed  Google Scholar 

  68. Langenau DM, Keefe MD, Storer NY, Jette CA, Smith AC, Ceol CJ, Bourque C, Look AT, Zon LI (2008) Co-injection strategies to modify radiation sensitivity and tumor initiation in transgenic Zebrafish. Oncogene 27(30):4242–4248. doi:10.1038/onc.2008.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N (2004) Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci U S A 101(35):12792–12797. doi:10.1073/pnas.0403929101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mullins MC, Hammerschmidt M, Haffter P, Nusslein-Volhard C (1994) Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol 4(3):189–202

    Article  CAS  PubMed  Google Scholar 

  71. Sun J, Liu W, Li L, Chen J, Wu M, Zhang Y, Leung AY, Zhang W, Wen Z, Liao W (2013) Suppression of Pu.1 function results in expanded myelopoiesis in zebrafish. Leukemia 27(9):1913–1917. doi:10.1038/leu.2013.67

    Article  CAS  PubMed  Google Scholar 

  72. Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297(5578):99–102. doi:10.1126/science.1071762

    Article  CAS  PubMed  Google Scholar 

  73. Law SH, Sargent TD (2014) The serine-threonine protein kinase PAK4 is dispensable in zebrafish: identification of a morpholino-generated pseudophenotype. PLoS One 9(6), e100268. doi:10.1371/journal.pone.0100268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Dong M, Fu YF, Du TT, Jing CB, Fu CT, Chen Y, Jin Y, Deng M, Liu TX (2009) Heritable and lineage-specific gene knockdown in zebrafish embryo. PLoS One 4(7):e6125. doi:10.1371/journal.pone.0006125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708. doi:10.1038/nbt1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. doi:10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29(8):697–698. doi:10.1038/nbt.1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN, Liwski RS, Houvras Y, Langenau DM (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11(8):821–824. doi:10.1038/nmeth.3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tenente IM, Tang Q, Moore JC, Langenau DM (2014) Normal and malignant muscle cell transplantation into immune compromised adult zebrafish. J Vis Exp (94). doi:10.3791/52597

  80. Moore FE, Langenau DM (2012) Through the looking glass: visualizing leukemia growth, migration, and engraftment using fluorescent transgenic zebrafish. Adv Hematol 2012:478164. doi:10.1155/2012/478164

    PubMed  PubMed Central  Google Scholar 

  81. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science (New York, NY) 299(5608):887–890. doi:10.1126/science.1080280

    Google Scholar 

  82. Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD (2006) TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 103(41):15166–15171. doi:10.1073/pnas.0603349103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD (2007) NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21(3):462–471. doi:10.1038/sj.leu.2404546

    Article  PubMed  CAS  Google Scholar 

  84. Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN, Delva L (2008) MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 143(3):378–382. doi:10.1111/j.1365-2141.2008.07362.x

    Article  CAS  PubMed  Google Scholar 

  85. Blackburn JS, Liu S, Raimondi AR, Ignatius MS, Salthouse CD, Langenau DM (2011) High-throughput imaging of adult fluorescent zebrafish with an LED fluorescence macroscope. Nat Protoc 6(2):229–241. doi:10.1038/nprot.2010.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Smith AC, Raimondi AR, Salthouse CD, Ignatius MS, Blackburn JS, Mizgirev IV, Storer NY, de Jong JL, Chen AT, Zhou Y, Revskoy S, Zon LI, Langenau DM (2010) High-throughput cell transplantation establishes that tumor-initiating cells are abundant in zebrafish T-cell acute lymphoblastic leukemia. Blood 115(16):3296–3303. doi:10.1182/blood-2009-10-246488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang L, Alt C, Li P, White RM, Zon LI, Wei X, Lin CP (2012) An optical platform for cell tracking in adult zebrafish. Cytometry A 81(2):176–182. doi:10.1002/cyto.a.21167

    Article  PubMed  Google Scholar 

  88. Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, Neuberg DS, Kanki JP, Look AT (2007) Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol 138(2):169–175. doi:10.1111/j.1365-2141.2007.06625.x

    Article  CAS  PubMed  Google Scholar 

  89. Feng H, Stachura DL, White RM, Gutierrez A, Zhang L, Sanda T, Jette CA, Testa JR, Neuberg DS, Langenau DM, Kutok JL, Zon LI, Traver D, Fleming MD, Kanki JP, Look AT (2010) T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell 18(4):353–366. doi:10.1016/j.ccr.2010.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gutierrez A, Feng H, Stevenson K, Neuberg DS, Calzada O, Zhou Y, Langenau DM, Look AT (2014) Loss of function tp53 mutations do not accelerate the onset of myc-induced T-cell acute lymphoblastic leukaemia in the zebrafish. Br J Haematol 166(1):84–90. doi:10.1111/bjh.12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Reynolds C, Roderick JE, LaBelle JL, Bird G, Mathieu R, Bodaar K, Colon D, Pyati U, Stevenson KE, Qi J, Harris M, Silverman LB, Sallan SE, Bradner JE, Neuberg DS, Look AT, Walensky LD, Kelliher MA, Gutierrez A (2014) Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia. Leukemia 28(9):1819–1827. doi:10.1038/leu.2014.78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Frazer JK, Meeker ND, Rudner L, Bradley DF, Smith AC, Demarest B, Joshi D, Locke EE, Hutchinson SA, Tripp S, Perkins SL, Trede NS (2009) Heritable T-cell malignancy models established in a zebrafish phenotypic screen. Leukemia 23(10):1825–1835. doi:10.1038/leu.2009.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI (2007) Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc Natl Acad Sci U S A 104(22):9410–9415. doi:10.1073/pnas.0611302104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yeh JR, Munson KM, Chao YL, Peterson QP, Macrae CA, Peterson RT (2008) AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 135(2):401–410. doi:10.1242/dev.008904

    Article  CAS  PubMed  Google Scholar 

  95. Yeh JR, Munson KM, Elagib KE, Goldfarb AN, Sweetser DA, Peterson RT (2009) Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol 5(4):236–243. doi:10.1038/nchembio.147

    Google Scholar 

  96. Forrester AM, Grabher C, McBride ER, Boyd ER, Vigerstad MH, Edgar A, Kai FB, Da’as SI, Payne E, Look AT, Berman JN (2011) NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 155(2):167–181. doi:10.1111/j.1365-2141.2011.08810.x

    Article  PubMed  Google Scholar 

  97. Alghisi E, Distel M, Malagola M, Anelli V, Santoriello C, Herwig L, Krudewig A, Henkel CV, Russo D, Mione MC (2013) Targeting oncogene expression to endothelial cells induces proliferation of the myelo-erythroid lineage by repressing the Notch pathway. Leukemia 27(11):2229–2241. doi:10.1038/leu.2013.132

    Article  CAS  PubMed  Google Scholar 

  98. Bolli N, Payne EM, Grabher C, Lee JS, Johnston AB, Falini B, Kanki JP, Look AT (2010) Expression of the cytoplasmic NPM1 mutant (NPMc+) causes the expansion of hematopoietic cells in zebrafish. Blood 115(16):3329–3340. doi:10.1182/blood-2009-02-207225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kalev-Zylinska ML, Horsfield JA, Flores MV, Postlethwait JH, Vitas MR, Baas AM, Crosier PS, Crosier KE (2002) Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129(8):2015–2030

    CAS  PubMed  Google Scholar 

  100. Shen LJ, Chen FY, Zhang Y, Cao LF, Kuang Y, Zhong M, Wang T, Zhong H (2013) MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. PLoS One 8(3), e59070. doi:10.1371/journal.pone.0059070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gjini E, Mansour MR, Sander JD, Moritz N, Nguyen AT, Kesarsing M, Gans E, He S, Chen S, Ko M, Kuang YY, Yang S, Zhou Y, Rodig S, Zon LI, Joung JK, Rao A, Look AT (2015) A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 35(5):789–804. doi:10.1128/MCB.00971-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535–1548. doi:10.1056/NEJMra023001

    Article  CAS  PubMed  Google Scholar 

  103. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi:10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nakajima H, Kunimoto H (2014) TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci 105(9):1093–1099. doi:10.1111/cas.12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Downing JR (1999) The AML1-ETO chimaeric transcription factor in acute myeloid leukaemia: biology and clinical significance. Br J Haematol 106(2):296–308

    Article  CAS  PubMed  Google Scholar 

  106. Borrow J, Shearman AM, Stanton VP Jr, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE (1996) The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12(2):159–167. doi:10.1038/ng0296-159

    Article  CAS  PubMed  Google Scholar 

  107. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87

    Article  CAS  PubMed  Google Scholar 

  108. Rudner LA, Brown KH, Dobrinski KP, Bradley DF, Garcia MI, Smith AC, Downie JM, Meeker ND, Look AT, Downing JR, Gutierrez A, Mullighan CG, Schiffman JD, Lee C, Trede NS, Frazer JK (2011) Shared acquired genomic changes in zebrafish and human T-ALL. Oncogene 30(41):4289–4296. doi:10.1038/onc.2011.138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blackburn JS, Liu S, Raiser DM, Martinez SA, Feng H, Meeker ND, Gentry J, Neuberg D, Look AT, Ramaswamy S, Bernards A, Trede NS, Langenau DM (2012) Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia 26(9):2069–2078. doi:10.1038/leu.2012.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. von Boehmer H (1997) T-call development: is notch a key player in lineage decisions? Curr Biol 7(5):R308–R310

    Article  Google Scholar 

  111. O’Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH, Alt FW, Kelliher M, Look AT (2006) Activating Notch1 mutations in mouse models of T-ALL. Blood 107(2):781–785. doi:10.1182/blood-2005-06-2553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Cory S (1986) Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv Cancer Res 47:189–234

    Article  CAS  PubMed  Google Scholar 

  113. Klein G, Klein E (1985) Myc/Ig juxtaposition by chromosomal translocations: some new insights, puzzles and paradoxes. Immunol Today 6(7):208–215. doi:10.1016/0167-5699(85)90036-2

    Article  CAS  PubMed  Google Scholar 

  114. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM (1988) The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167(2):353–371

    Article  CAS  PubMed  Google Scholar 

  115. Koch U, Radtke F (2011) Notch in T-ALL: new players in a complex disease. Trends Immunol 32(9):434–442. doi:10.1016/j.it.2011.06.005

    Article  CAS  PubMed  Google Scholar 

  116. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, Bhagat G, Agarwal AM, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zuniga-Pflucker JC, Dominguez M, Ferrando AA (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210. doi:10.1038/nm1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L, Krishnamoorthy V, Bhasin M, Capobianco AJ, Kelliher MA (2006) Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 26(21):8022–8031. doi:10.1128/MCB.01091-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tzoneva G, Ferrando AA (2012) Recent advances on NOTCH signaling in T-ALL. Curr Top Microbiol Immunol 360:163–182. doi:10.1007/82_2012_232

    CAS  PubMed  Google Scholar 

  119. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20(15):2096–2109. doi:10.1101/gad.1450406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gutierrez A, Look AT (2007) NOTCH and PI3K-AKT pathways intertwined. Cancer Cell 12(5):411–413. doi:10.1016/j.ccr.2007.10.027

    Article  CAS  PubMed  Google Scholar 

  121. Puisieux A, Valsesia-Wittmann S (2006) Cancer cells escape from failsafe programs in a simple Twist. Bull Cancer 93(3):251–256

    CAS  PubMed  Google Scholar 

  122. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL (1999) Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13(20):2658–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Strasser A, Harris AW, Bath ML, Cory S (1990) Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348(6299):331–333. doi:10.1038/348331a0

    Article  CAS  PubMed  Google Scholar 

  124. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P, Monpoux F, Van Rompaey L, Baens M, Van den Berghe H, Marynen P (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90(7):2535–2540

    CAS  PubMed  Google Scholar 

  125. Onnebo SM, Rasighaemi P, Kumar J, Liongue C, Ward AC (2012) Alternative TEL-JAK2 fusions associated with T-cell acute lymphoblastic leukemia and atypical chronic myelogenous leukemia dissected in zebrafish. Haematologica 97(12):1895–1903. doi:10.3324/haematol.2012.064659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Blackburn JS, Liu S, Wilder JL, Dobrinski KP, Lobbardi R, Moore FE, Martinez SA, Chen EY, Lee C, Langenau DM (2014) Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell 25(3):366–378. doi:10.1016/j.ccr.2014.01.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bolling SF, Kunkel SL, Lin H (1992) Prolongation of cardiac allograft survival in rats by anti-TNF and cyclosporine combination therapy. Transplantation 53(2):283–286

    Article  CAS  PubMed  Google Scholar 

  128. Novoa B, Figueras A (2012) Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol 946:253–275. doi:10.1007/978-1-4614-0106-3_15

    Article  CAS  PubMed  Google Scholar 

  129. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249. doi:10.1111/j.1476-5381.2010.01127.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4(1):35–44

    Article  CAS  PubMed  Google Scholar 

  131. Mizgirev IV, Revskoy S (2010) A new zebrafish model for experimental leukemia therapy. Cancer Biol Ther 9(11):895–902

    Article  CAS  PubMed  Google Scholar 

  132. Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F, Poglio S, Uzan B, Clemons P, VerPlank L, An F, Burbank J, Norton S, Tolliday N, Steen H, Weng AP, Yuan H, Bradner JE, Mitsiades C, Look AT, Aster JC (2014) Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124(2):644–655. doi:10.1172/JCI65093

    Google Scholar 

  133. Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L, Choudhry P, Manos EJ, Sofla H, Sanati A, Welborn S, Agarwal A, Spangrude GJ, Miles RR, Cox JE, Frazer JK, Deininger M, Balan K, Sigman M, Muschen M, Perova T, Johnson R, Montpellier B, Guidos CJ, Jones DA, Trede NS (2012) Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood 119(24):5621–5631. doi:10.1182/blood-2011-12-398818

    Google Scholar 

  134. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96(4):612–616. doi:10.3324/haematol.2010.031401

    Google Scholar 

  135. Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo. Br J Haematol 153(6):786–789. doi:10.1111/j.1365-2141.2011.08661.x

    Google Scholar 

  136. Stuart SA, Minami Y, Wang JY (2009) The CML stem cell: evolution of the progenitor. Cell Cycle 8(9):1338–1343

    Google Scholar 

  137. Zhang B, Shimada Y, Kuroyanagi J, Umemoto N, Nishimura Y, Tanaka T (2014) Quantitative phenotyping-based in vivo chemical screening in a zebrafish model of leukemia stem cell xenotransplantation. PLoS One 9(1):e85439. doi:10.1371/journal.pone.0085439

    Google Scholar 

  138. Carvalho R, de Sonneville J, Stockhammer OW, Savage ND, Veneman WJ, Ottenhoff TH, Dirks RP, Meijer AH, Spaink HP (2011) A high-throughput screen for tuberculosis progression. PLoS One 6(2):e16779. doi:10.1371/journal.pone.0016779

    Google Scholar 

  139. Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marin-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP (2013) Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods (San Diego, Calif) 62(3):246–254. doi:10.1016/j.ymeth.2013.06.002

    Google Scholar 

  140. Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2(9):e862. doi:10.1371/journal.pone.0000862

    Google Scholar 

Download references

Acknowledgements

The authors thank Joseph Hirsch for editorial assistance, and Leah Huiting and Dr. Nicole M. Anderson for helpful comments and suggestions. N.R.H is supported by a training grant (T32GM008541) from the National Institutes of Health. H.F. is supported by a grant (R00CA134743) from the National Institutes of Health, a career development grant from the St. Baldrick’s Foundation, a Karin Grunebaum Faculty Fellowship from the Karin Grunebaum Cancer Foundation, a Ralph Edwards Career Development Professorship from Boston University, and an institutional grant (IRG −72-001-36-IRG) from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harrison, N.R., Laroche, F.J.F., Gutierrez, A., Feng, H. (2016). Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_15

Download citation

Publish with us

Policies and ethics