Skip to main content

The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool

  • Chapter
  • First Online:
Cancer and Zebrafish

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Animal xenografts of human cancers represent a key preclinical tool in the field of cancer research. While mouse xenografts have long been the gold standard, investigators have begun to use zebrafish (Danio rerio) xenotransplantation as a relatively rapid, robust and cost-effective in vivo model of human cancers. There are several important methodological considerations in the design of an informative and efficient zebrafish xenotransplantation experiment. Various transgenic fish strains have been created that facilitate microscopic observation, ranging from the completely transparent casper fish to the Tg(fli1:eGFP) fish that expresses fluorescent GFP protein in its vascular tissue. While human cancer cell lines have been used extensively in zebrafish xenotransplantation studies, several reports have also used primary patient samples as the donor material. The zebrafish is ideally suited for transplanting primary patient material by virtue of the relatively low number of cells required for each embryo (between 50 and 300 cells), the absence of an adaptive immune system in the early zebrafish embryo, and the short experimental timeframe (5–7 days). Following xenotransplantation into the fish, cells can be tracked using in vivo or ex vivo measures of cell proliferation and migration, facilitated by fluorescence or human-specific protein expression. Importantly, assays have been developed that allow for the reliable detection of in vivo human cancer cell growth or inhibition following administration of drugs of interest. The zebrafish xenotransplantation model is a unique and effective tool for the study of cancer cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharpless NE, Depinho RA (2006) The mighty mouse: genetically engineered mouse models in cancer drug development. Nat Rev Drug Discov 5:741–754

    Article  CAS  PubMed  Google Scholar 

  2. Cariati M, Marlow R, Dontu G (2011) Cancer cell culture. Methods Mol Biol 731:471–482

    Article  CAS  PubMed  Google Scholar 

  3. Voskoglou-Nomikos T, Pater JL, Seymour L (2003) Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 9:4227–4239

    PubMed  Google Scholar 

  4. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch G-J, White S, Chow W, Kilian B, Quintais LT, Guerra-Assunção JA, Zhou Y, Gu Y, Yen J, Vogel J-H, Eyre T, Redmond S, Banerjee R et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, Shultz LD, Bertolini F (2008) Human acute leukemia cells injected in NOD/LtSz-scid/IL-2R?? null mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 123(August):2222–2227

    Article  CAS  PubMed  Google Scholar 

  6. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489

    Article  CAS  PubMed  Google Scholar 

  7. Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerke C (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137

    Article  PubMed  Google Scholar 

  8. Berman JN, Chiu PPL, Dellaire G (2014) Preclinical animal models for cancer genomics. In Dellaire G, Berman J, Arceci R (eds) Cancer genomics from bench to bedside, 1st edn. Elsevier, pp 109–131

    Google Scholar 

  9. Rathinam C, Poueymirou WT, Rojas J, Murphy AJ, Valenzuela DM, Yancopoulos GD, Rongvaux A, Eynon EE, Manz MG, Flavell RA (2011) Efficient differentiation and function of human macrophages in humanized CSF-1 mice. Blood 118:3119–3128

    Article  CAS  PubMed  Google Scholar 

  10. Wunderlich M, Chou F-S, Link KA, Mizukawa B, Perry RL, Carroll M, Mulloy JC (2010) AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24:1785–1788

    Article  CAS  PubMed  Google Scholar 

  11. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, Richardson A, Weinberg RA (2004) Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci U S A 101:4966–4971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13:624–636

    Article  CAS  PubMed  Google Scholar 

  14. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367

    Article  CAS  PubMed  Google Scholar 

  15. Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3:533–539

    Article  CAS  PubMed  Google Scholar 

  16. Streisinger G, Walker C, Dower N, Knauber D, Singer F (1981) Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–296

    Article  CAS  PubMed  Google Scholar 

  17. Pliss GB, Zabezhinski MA, Petrov AS, Khudoley VV (1982) Peculiarities of N-nitramines carcinogenic action. Arch Geschwulstforsch 52:629–634

    CAS  PubMed  Google Scholar 

  18. Long HK, Sims D, Heger A, Blackledge NP, Kutter C, Wright ML, Grützner F, Odom DT, Patient R, Ponting CP, Klose RJ (2013) Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife 2013:1–19

    Google Scholar 

  19. Spitsbergen J, Kent M (2003) The state of the art of the zebrafish model for toxicology and toxicologic pathology research – advantages and current limitations. Toxicol Pathol 31:62–87

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Beckwith LG, Moore JL, Tsao-Wu GS, Harshbarger JC, Cheng KC (2000) Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab Invest 80:379–385

    Article  CAS  PubMed  Google Scholar 

  21. Lam S, Chua H, Gong Z, Lam T, Sin Y (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28:9–28

    Article  CAS  PubMed  Google Scholar 

  22. Lee LMJ, Seftor EA, Bonde G, Cornell RA, Hendrix MJC (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233:1560–1570

    Article  CAS  PubMed  Google Scholar 

  23. Hendrix MJC, Seftor EA, Hess AR, Seftor REB (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421

    Article  CAS  PubMed  Google Scholar 

  24. Mintz B, Illmensee K (1975) Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci U S A 72:3585–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9:139–151

    Article  PubMed  Google Scholar 

  26. Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke C-D, Lerch MM, Bagowski CP (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128

    Article  PubMed  PubMed Central  Google Scholar 

  27. Herpers R, Van De Kamp E, Duckers HJ, Schulte-Merker S (2008) Redundant roles for sox7 and sox18 in arteriovenous specification in Zebrafish. Circ Res 102:12–15

    Article  CAS  PubMed  Google Scholar 

  28. Lawson ND, Weinstein BM (2002) In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 248:307–318

    Article  CAS  PubMed  Google Scholar 

  29. Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104:17406–17411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo. Br J Haematol 153:786–789

    Article  CAS  PubMed  Google Scholar 

  31. Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2:2918–2923

    Article  CAS  PubMed  Google Scholar 

  32. Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67:2927–2931

    Article  CAS  PubMed  Google Scholar 

  33. Zhao H, Tang C, Cui K, Ang B-T, Wong STC (2009) A screening platform for glioma growth and invasion using bioluminescence imaging. Laboratory investigation. J Neurosurg 111:238–246

    Article  CAS  PubMed  Google Scholar 

  34. Topczewska JM, Postovit L-M, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJC (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12:925–932

    Article  CAS  PubMed  Google Scholar 

  35. Bentley VL, Veinotte CJ, Corkery DP, Pinder JB, LeBlanc MA, Bedard K, Weng AP, Berman JN, Dellaire G (2015) Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica 100:70–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rawls JF, Mellgren EM, Johnson SL (2001) How the zebrafish gets its stripes. Dev Biol 240:301–314

    Article  CAS  PubMed  Google Scholar 

  37. Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW (1999) Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    CAS  PubMed  Google Scholar 

  38. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 7:745–754

    Article  PubMed  PubMed Central  Google Scholar 

  40. Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tobia C, De Sena G, Presta M (2011) Zebrafish embryo, a tool to study tumor angiogenesis. Int J Dev Biol 55:505–509

    Article  CAS  PubMed  Google Scholar 

  42. Cheng J, Yan-Juan G, Wang Y, Cheng SH, Wong W-T (2011) Nanotherapeutics in angiogenesis: synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos. Int J Nanomedicine 6:2007–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vlecken DH, Bagowski CP (2009) LIMK1 and LIMK2 are important for metastatic behavior and tumor cell-induced angiogenesis of pancreatic cancer cells. Zebrafish 6:433–439

    Article  CAS  PubMed  Google Scholar 

  44. Camus S, Quevedo C, Menéndez S, Paramonov I, Stouten PFW, Janssen RA, Rueb S, He S, Snaar-Jagalska BE, Laricchia-Robbio L, Izpisua Belmonte JC (2012) Identification of phosphorylase kinase as a novel therapeutic target through high-throughput screening for anti-angiogenesis compounds in zebrafish. Oncogene 31:4333–4342

    Article  CAS  PubMed  Google Scholar 

  45. De Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6:24–37

    Article  PubMed  Google Scholar 

  46. Renshaw SA, Loynes CA, Trushell DMI, Elworthy S, Ingham PW, Whyte MKB (2006) A transgenic zebrafish model of neutrophilic inflammation. Blood 108:3976–3978

    Article  CAS  PubMed  Google Scholar 

  47. Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) Mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117:49–56

    Article  Google Scholar 

  48. Lin H-F, Traver D, Zhu H, Dooley K, Paw BH, Zon LI, Handin RI (2005) Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 106:3803–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. He S, Lamers GE, Beenakker J-WM, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP, Snaar-Jagalska BE (2012) Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 227:431–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Auer TO, Del Bene F (2014) CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Methods 69:142–150

    Article  CAS  PubMed  Google Scholar 

  51. Prykhozhij S, Rajan V, Gaston D, Berman JN (2015) CRISPR MultiTargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10, e0119372

    Article  PubMed  PubMed Central  Google Scholar 

  52. Willinger T, Rongvaux A, Strowig T, Manz MG, Flavell RA (2011) Improving human hemato-lymphoid-system mice by cytokine knock-in gene replacement. Trends Immunol 32:321–327

    Article  CAS  PubMed  Google Scholar 

  53. Jung D-W, Oh E-S, Park S-H, Chang Y-T, Kim C-H, Choi S-Y, Williams DR (2012) A novel zebrafish human tumor xenograft model validated for anti-cancer drug screening. Mol Biosyst 8:1930–1939

    Article  CAS  PubMed  Google Scholar 

  54. Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. El-Naggar A, Veinotte C, Tognon C, Corkery D, Cheng H, Tirode F, Grunewald T, Kyle A, Baker J, Mathers J, Somasekharad S, LePard N, McKinney S, Bennewith K, Minchinton A, Delattre O, Wang Y, Dellaire G, Berman J, Sorensen P (2015) Translational activation of HIF1a by YB-1 promotes sarcoma metastasis. Cancer Cell 27:682–697

    Article  CAS  PubMed  Google Scholar 

  56. Lara R, Mauri FA, Taylor H, Derua R, Shia A, Gray C, Nicols A, Shiner RJ, Schofield E, Bates PA, Waelkens E, Dallman M, Lamb J, Zicha D, Downward J, Seckl MJ, Pardo OE (2011) An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis. Oncogene 30:3513–3521

    Article  CAS  PubMed  Google Scholar 

  57. Vlecken DH, Bagowski CP (2009) LIMK1 and LIMK2 are important for metastatic behavior of pancreatic. Cancer Cells 6

    Google Scholar 

  58. Veinotte CJ, Corkery D, Dellaire G, El-Naggar A, Sinclair K, Bernstein ML, Sorensen PB, Berman JN (2012) Using zebrafish xenotransplantation to study the role of Y-Box binding protein (YB-1) in the metastasis of Ewing family tumors. In Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research, 2012, Abstract no 1398

    Google Scholar 

  59. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Geiger GA, Fu W, Kao GD (2008) Temozolomide-mediated radiosensitization of human glioma cells in a zebrafish embryonic system. Cancer Res 68:3396–3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dellaire G, Bazett-Jones DP (2004) PML nuclear bodies: dynamic sensors of DNA damage and cellular stress. Bioessays 26:963–977

    Article  CAS  PubMed  Google Scholar 

  62. Corkery D, Cann K, Dellaire G (2011) Nuclear subdomains. In Nabi I (ed) Cell domains. Wiley, pp 393–414

    Google Scholar 

  63. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4:1238–1246

    Article  CAS  PubMed  Google Scholar 

  64. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN, Liwski RS, Houvras Y, Langenau DM (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11:6–11

    Article  Google Scholar 

  65. Mizgireuv IV, Revskoy SY (2006) Transplantable tumor lines generated in clonal zebrafish. Cancer Res 66:3120–3125

    Article  CAS  PubMed  Google Scholar 

  66. Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97:12965–12969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murphey RD, Stern HM, Straub CT, Zon LI (2006) A chemical genetic screen for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68:213–219

    Article  CAS  PubMed  Google Scholar 

  68. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  CAS  PubMed  Google Scholar 

  69. Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, Sosnovik DE, Shin JT, Haber DA, Berman JN, Chao E, Peterson RT (2014) Visnagin protects against doxorubicin-induced cardiomyopathy through inhibition of mitochondrial malate dehydrogenase. Sci Transl Med 6:266ra170

    Google Scholar 

  70. Jemal A, Bray F, Ferlay J (2011) Global cancer Statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  71. Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke C-D, Lerch MM, Bagowski CP (2009) Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 137:2136–2145.e1–7

    Google Scholar 

  72. Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12:325–338

    Article  CAS  PubMed  Google Scholar 

  73. Lally BE, Geiger GA, Kridel S, Arcury-Quandt AE, Robbins ME, Kock ND, Wheeler K, Peddi P, Georgakilas A, Kao GD, Koumenis C (2007) Identification and biological evaluation of a novel and potent small molecule radiation sensitizer via an unbiased screen of a chemical library. Cancer Res 67:8791–8799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F, Kumar J, Thompson EW, Quinn MA, Findlay JK, Ahmed N (2011) Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile. J Cell Biochem 112:2850–2864

    Article  CAS  PubMed  Google Scholar 

  75. Zhao C, Wang X, Zhao Y, Li Z, Lin S, Wei Y, Yang H (2011) A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6:1–9

    Google Scholar 

  76. Ghotra VPS, He S, de Bont H, van der Ent W, Spaink HP, van de Water B, Snaar-Jagalska BE, Danen EHJ (2012) Automated whole animal bio-imaging assay for human cancer dissemination. PLoS One 7

    Google Scholar 

  77. Yang X-J, Cui W, Gu A, Xu C, Yu S-C, Li T-T, Cui Y-H, Zhang X, Bian X-W (2013) A novel zebrafish xenotransplantation model for study of glioma stem cell invasion. PLoS One 8, e61801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, Ten Dijke P (2013) Transforming growth factor-β signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 15:R106

    Article  PubMed  PubMed Central  Google Scholar 

  79. Teng Y, Xie X, Walker S, White DT, Mumm JS, Cowell JK (2013) Evaluating human cancer cell metastasis in zebrafish. BMC Cancer 13:453

    Article  PubMed  PubMed Central  Google Scholar 

  80. Van der Ent W, Burrello C, Teunisse AF, Ksander BR, van der Velden PA, Jager MJ, Jochemsen AG, Snaar-Jagalska BE (2014) Modeling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci 55:6612–6622

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

JW is funded by a Killam Predoctoral Award, a Nova Scotia Health Research Foundation Scotia Scholar award, and the Colleen Elliott Award for Excellence in Cancer Research. This work was funded by a Collaborative Health Research Project (CHRP) grant funded by the Canadian Institutes of Health (CIHR) and the Natural Sciences and Engineering Research Council (NSERC) to GD and JNB, and an NSERC Discovery Grant to GD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason N. Berman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wertman, J., Veinotte, C.J., Dellaire, G., Berman, J.N. (2016). The Zebrafish Xenograft Platform: Evolution of a Novel Cancer Model and Preclinical Screening Tool. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_13

Download citation

Publish with us

Policies and ethics