Skip to main content

Uncharted Waters: Zebrafish Cancer Models Navigate a Course for Oncogene Discovery

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 916))

Abstract

Over a decade has elapsed since the first genetically-engineered zebrafish cancer model was described. During this time remarkable progress has been made. Sophisticated genetic tools have been built to generate oncogene expressing cancers and characterize multiple models of solid and blood tumors. These models have led to unique insights into mechanisms of tumor initiation and progression. New drug targets have been identified, particularly through the functional analysis of cancer genomes. Now in the second decade, zebrafish cancer models are poised for even faster growth as they are used in high-throughput genetic analyses to elucidate key mechanisms underlying critical cancer phenotypes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Varmus HE (1984) The molecular genetics of cellular oncogenes. Annu Rev Genet 18:553–612

    Article  CAS  PubMed  Google Scholar 

  2. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI et al (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299:887–890

    Article  CAS  PubMed  Google Scholar 

  3. Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL, Look AT (2005) Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105:3278–3285

    Article  CAS  PubMed  Google Scholar 

  4. Blackburn JS, Liu S, Wilder JL, Dobrinski KP, Lobbardi R, Moore FE, Martinez SA, Chen EY, Lee C, Langenau DM (2014) Clonal evolution enhances leukemia-propagating cell frequency in T cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation. Cancer Cell 25:366–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Langenau DM, Feng H, Berghmans S, Kanki JP, Kutok JL, Look AT (2005) Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 102:6068–6073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, Neuberg DS, Kanki JP, Look AT (2007) Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol 138:169–175

    Article  CAS  PubMed  Google Scholar 

  7. Feng H, Stachura DL, White RM, Gutierrez A, Zhang L, Sanda T, Jette CA, Testa JR, Neuberg DS, Langenau DM et al (2010) T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell 18:353–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gutierrez A, Pan L, Groen RW, Baleydier F, Kentsis A, Marineau J, Grebliunaite R, Kozakewich E, Reed C, Pflumio F et al (2014) Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J Clin Invest 124:644–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Jette C, Kanki JP, Aster JC, Look AT, Griffin JD (2007) NOTCH1-induced T-cell leukemia in transgenic zebrafish. Leukemia 21:462–471

    Article  PubMed  Google Scholar 

  10. Blackburn JS, Liu S, Raiser DM, Martinez SA, Feng H, Meeker ND, Gentry J, Neuberg D, Look AT, Ramaswamy S et al (2012) Notch signaling expands a pre-malignant pool of T-cell acute lymphoblastic leukemia clones without affecting leukemia-propagating cell frequency. Leukemia 26:2069–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD (2006) TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 103:15166–15171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN, Delva L (2008) MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish. Br J Haematol 143:378–382

    Article  CAS  PubMed  Google Scholar 

  13. Forrester AM, Grabher C, McBride ER, Boyd ER, Vigerstad MH, Edgar A, Kai FB, Da’as SI, Payne E, Look AT et al (2011) NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis. Br J Haematol 155:167–181

    Article  PubMed  Google Scholar 

  14. Deveau AP, Forrester AM, Coombs AJ, Wagner GS, Grabher C, Chute IC, Leger D, Mingay M, Alexe G, Rajan V et al (2015) Epigenetic therapy restores normal hematopoiesis in a zebrafish model of NUP98-HOXA9-induced myeloid disease. Leukemia 29:2086–2097

    Article  CAS  PubMed  Google Scholar 

  15. Gjini E, Mansour MR, Sander JD, Moritz N, Nguyen AT, Kesarsing M, Gans E, He S, Chen S, Ko M et al (2015) A zebrafish model of myelodysplastic syndrome produced through tet2 genomic editing. Mol Cell Biol 35:789–804

    Article  PubMed  PubMed Central  Google Scholar 

  16. Balci TB, Prykhozhij SV, Teh EM, Da’as SI, McBride E, Liwski R, Chute IC, Leger D, Lewis SM, Berman JN (2014) A transgenic zebrafish model expressing KIT-D816V recapitulates features of aggressive systemic mastocytosis. Br J Haematol 167:48–61

    Article  CAS  PubMed  Google Scholar 

  17. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD et al (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15:249–254

    Article  CAS  PubMed  Google Scholar 

  18. Yen J, White RM, Wedge DC, Van Loo P, de Ridder J, Capper A, Richardson J, Jones D, Raine K, Watson IR et al (2013) The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models. Genome Biol 14:R113

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferre F et al (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iyengar S, Houvras Y, Ceol CJ (2012) Screening for melanoma modifiers using a zebrafish autochthonous tumor model. J Vis Exp. e50086

    Google Scholar 

  21. Lister JA, Capper A, Zeng Z, Mathers ME, Richardson J, Paranthaman K, Jackson IJ, Patton EE (2014) A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regression in vivo. J Invest Dermatol 134:133–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C et al (2011) DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 471:518–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6:397–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michailidou C, Jones M, Walker P, Kamarashev J, Kelly A, Hurlstone AF (2009) Dissecting the roles of Raf- and PI3K-signalling pathways in melanoma formation and progression in a zebrafish model. Dis Model Mech 2:399–411

    Article  CAS  PubMed  Google Scholar 

  25. Anelli V, Santoriello C, Distel M, Koster RW, Ciccarelli FD, Mione M (2009) Global repression of cancer gene expression in a zebrafish model of melanoma is linked to epigenetic regulation. Zebrafish 6:417–424

    Article  CAS  PubMed  Google Scholar 

  26. Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A, Koster RW, Hurlstone A, Mione M (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5, e15170

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li Z, Zheng W, Wang Z, Zeng Z, Zhan H, Li C, Zhou L, Yan C, Spitsbergen JM, Gong Z (2013) A transgenic zebrafish liver tumor model with inducible Myc expression reveals conserved Myc signatures with mammalian liver tumors. Dis Model Mech 6:414–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Lam SH, Mathavan S, Parinov S, Gong Z (2011) A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Dis Model Mech 4:801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z (2012) An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech 5:63–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI, Chen X, Kojima K, Thung S, Bronson RT et al (2014) UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 25:196–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Evason KJ, Francisco MT, Juric V, Balakrishnan S, Lopez Pazmino Mdel P, Gordan JD, Kakar S, Spitsbergen J, Goga A, Stainier DY (2015) Identification of chemical inhibitors of beta-catenin-driven liver tumorigenesis in zebrafish. PLoS Genet 11, e1005305

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lu JW, Yang WY, Tsai SM, Lin YM, Chang PH, Chen JR, Wang HD, Wu JL, Jin SL, Yuh CH (2013) Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PLoS One 8, e76951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu W, Chen JR, Hsu CH, Li YH, Chen YM, Lin CY, Huang SJ, Chang ZK, Chen YC, Lin CH et al (2012) A zebrafish model of intrahepatic cholangiocarcinoma by dual expression of hepatitis B virus X and hepatitis C virus core protein in liver. Hepatology 56:2268–2276

    Article  CAS  PubMed  Google Scholar 

  34. Park SW, Davison JM, Rhee J, Hruban RH, Maitra A, Leach SD (2008) Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology 134:2080–2090

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu NA, Jiang H, Ben-Shlomo A, Wawrowsky K, Fan XM, Lin S, Melmed S (2011) Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci U S A 108:8414–8419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Provost E, Bailey JM, Aldrugh S, Liu S, Iacobuzio-Donahue C, Leach SD (2014) The tumor suppressor rpl36 restrains KRAS(G12V)-induced pancreatic cancer. Zebrafish 11:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schiavone M, Rampazzo E, Casari A, Battilana G, Persano L, Moro E, Liu S, Leach SD, Tiso N, Argenton F (2014) Zebrafish reporter lines reveal in vivo signaling pathway activities involved in pancreatic cancer. Dis Model Mech 7:883–894

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang HW, Kutok JL, Lee NH, Piao HY, Fletcher CD, Kanki JP, Look AT (2004) Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res 64:7256–7262

    Article  CAS  PubMed  Google Scholar 

  39. Neumann JC, Chandler GL, Damoulis VA, Fustino NJ, Lillard K, Looijenga L, Margraf L, Rakheja D, Amatruda JF (2011) Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc Natl Acad Sci U S A 108:13153–13158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neumann JC, Dovey JS, Chandler GL, Carbajal L, Amatruda JF (2009) Identification of a heritable model of testicular germ cell tumor in the zebrafish. Zebrafish 6:319–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gill JA, Lowe L, Nguyen J, Liu PP, Blake T, Venkatesh B, Aplan PD (2010) Enforced expression of Simian virus 40 large T-antigen leads to testicular germ cell tumors in zebrafish. Zebrafish 7:333–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ju B, Chen W, Spitsbergen JM, Lu J, Vogel P, Peters JL, Wang YD, Orr BA, Wu J, Henson HE et al (2014) Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway. Oncogenesis 3, e96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ju B, Chen W, Orr BA, Spitsbergen JM, Jia S, Eden CJ, Henson HE, Taylor MR (2015) Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer 14:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, Morris JP, Liu TX, Schulte-Merker S, Kanki JP et al (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A 102:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shin J, Padmanabhan A, de Groh ED, Lee JS, Haidar S, Dahlberg S, Guo F, He S, Wolman MA, Granato M et al (2012) Zebrafish neurofibromatosis type 1 genes have redundant functions in tumorigenesis and embryonic development. Dis Model Mech 5:881–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21:1382–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leacock SW, Basse AN, Chandler GL, Kirk AM, Rakheja D, Amatruda JF (2012) A zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 5:95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burger A, Vasilyev A, Tomar R, Selig MK, Nielsen GP, Peterson RT, Drummond IA, Haber DA (2014) A zebrafish model of chordoma initiated by notochord-driven expression of HRASV12. Dis Model Mech 7:907–913

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chu CY, Chen CF, Rajendran RS, Shen CN, Chen TH, Yen CC, Chuang CK, Lin DS, Hsiao CD (2012) Overexpression of Akt1 enhances adipogenesis and leads to lipoma formation in zebrafish. PLoS One 7, e36474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, Rodig SJ, Neuberg DS, Helman D, Feng H et al (2012) Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 21:362–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI (2007) Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc Natl Acad Sci U S A 104:9410–9415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ju B, Spitsbergen J, Eden CJ, Taylor MR, Chen W (2009) Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Mol Cancer 8:40

    Article  PubMed  PubMed Central  Google Scholar 

  53. White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13:624–636

    Article  CAS  PubMed  Google Scholar 

  54. Chapman A, Fernandez del Ama L, Ferguson J, Kamarashev J, Wellbrock C, Hurlstone A (2014) Heterogeneous tumor subpopulations cooperate to drive invasion. Cell Rep 8:688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ignatius MS, Chen E, Elpek NM, Fuller AZ, Tenente IM, Clagg R, Liu S, Blackburn JS, Linardic CM, Rosenberg AE et al (2012) In vivo imaging of tumor-propagating cells, regional tumor heterogeneity, and dynamic cell movements in embryonal rhabdomyosarcoma. Cancer Cell 21:680–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ruzicka L, Bradford YM, Frazer K, Howe DG, Paddock H, Ramachandran S, Singer A, Toro S, Van Slyke CE, Eagle AE et al (2015) ZFIN, the zebrafish model organism database: updates and new directions. Genesis 53:498–509

    Article  CAS  PubMed  Google Scholar 

  57. Thisse B, Thisse C (2014) In situ hybridization on whole-mount zebrafish embryos and young larvae. Methods Mol Biol 1211:53–67

    Article  CAS  PubMed  Google Scholar 

  58. Choorapoikayil S, Kuiper RV, de Bruin A, den Hertog J (2012) Haploinsufficiency of the genes encoding the tumor suppressor Pten predisposes zebrafish to hemangiosarcoma. Dis Model Mech 5:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Croushore JA, Blasiole B, Riddle RC, Thisse C, Thisse B, Canfield VA, Robertson GP, Cheng KC, Levenson R (2005) Ptena and ptenb genes play distinct roles in zebrafish embryogenesis. Dev Dyn 234:911–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Faucherre A, Taylor GS, Overvoorde J, Dixon JE, Hertog J (2008) Zebrafish pten genes have overlapping and non-redundant functions in tumorigenesis and embryonic development. Oncogene 27:1079–1086

    Article  CAS  PubMed  Google Scholar 

  61. Padmanabhan A, Lee JS, Ismat FA, Lu MM, Lawson ND, Kanki JP, Look AT, Epstein JA (2009) Cardiac and vascular functions of the zebrafish orthologues of the type I neurofibromatosis gene NFI. Proc Natl Acad Sci U S A 106:22305–22310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park JT, Leach SD (2013) TAILOR: transgene activation and inactivation using lox and rox in zebrafish. PLoS One 8, e85218

    Article  PubMed  PubMed Central  Google Scholar 

  63. Taylor AM, Zon LI (2009) Zebrafish tumor assays: the state of transplantation. Zebrafish 6:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN et al (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11:821–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI (2015) A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 32:756–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cichowski K, Jacks T (2001) NF1 tumor suppressor gene function: narrowing the GAP. Cell 104:593–604

    Article  CAS  PubMed  Google Scholar 

  68. Livshits G, Lowe SW (2013) Accelerating cancer modeling with RNAi and nongermline genetically engineered mouse models. Cold Spring Harb Protoc 2013

    Google Scholar 

  69. van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H, Berns A (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737–752

    Article  PubMed  Google Scholar 

  70. Zender L, Xue W, Zuber J, Semighini CP, Krasnitz A, Ma B, Zender P, Kubicka S, Luk JM, Schirmacher P et al (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lin WM, Baker AC, Beroukhim R, Winckler W, Feng W, Marmion JM, Laine E, Greulich H, Tseng H, Gates C et al (2008) Modeling genomic diversity and tumor dependency in malignant melanoma. Cancer Res 68:664–673

    Article  CAS  PubMed  Google Scholar 

  72. Amos CI, Wang LE, Lee JE, Gershenwald JE, Chen WV, Fang S, Kosoy R, Zhang M, Qureshi AA, Vattathil S et al (2011) Genome-wide association study identifies novel loci predisposing to cutaneous melanoma. Hum Mol Genet 20:5012–5023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Macgregor S, Montgomery GW, Liu JZ, Zhao ZZ, Henders AK, Stark M, Schmid H, Holland EA, Duffy DL, Zhang M et al (2011) Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nat Genet 43:1114–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR (2015) Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol 33:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dupuy AJ, Akagi K, Largaespada DA, Copeland NG, Jenkins NA (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436:221–226

    Article  CAS  PubMed  Google Scholar 

  76. McGrail M, Hatler JM, Kuang X, Liao HK, Nannapaneni K, Watt KE, Uhl JD, Largaespada DA, Vollbrecht E, Scheetz TE et al (2011) Somatic mutagenesis with a Sleeping Beauty transposon system leads to solid tumor formation in zebrafish. PLoS One 6, e18826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Freeman JL, Ceol C, Feng H, Langenau DM, Belair C, Stern HM, Song A, Paw BH, Look AT, Zhou Y et al (2009) Construction and application of a zebrafish array comparative genomic hybridization platform. Genes Chromosomes Cancer 48:155–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Lees JA, Hopkins N (2010) Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers. Proc Natl Acad Sci U S A 107:16940–16945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rudner LA, Brown KH, Dobrinski KP, Bradley DF, Garcia MI, Smith AC, Downie JM, Meeker ND, Look AT, Downing JR et al (2011) Shared acquired genomic changes in zebrafish and human T-ALL. Oncogene 30:4289–4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Chen EY, Dobrinski KP, Brown KH, Clagg R, Edelman E, Ignatius MS, Chen JY, Brockmann J, Nielsen GP, Ramaswamy S et al (2013) Cross-species array comparative genomic hybridization identifies novel oncogenic events in zebrafish and human embryonal rhabdomyosarcoma. PLoS Genet 9, e1003727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang G, Hoersch S, Amsterdam A, Whittaker CA, Beert E, Catchen JM, Farrington S, Postlethwait JH, Legius E, Hopkins N et al (2013) Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery. PLoS Genet 9, e1003734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, van Eeden FJ, Jiang YJ, Heisenberg CP et al (1996) The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  85. Sadler KC, Krahn KN, Gaur NA, Ukomadu C (2007) Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104:1570–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Topczewska JM, Postovit LM, Margaryan NV, Sam A, Hess AR, Wheaton WW, Nickoloff BJ, Topczewski J, Hendrix MJ (2006) Embryonic and tumorigenic pathways converge via Nodal signaling: role in melanoma aggressiveness. Nat Med 12:925–932

    Article  CAS  PubMed  Google Scholar 

  87. Liu S, Leach SD (2011) Screening pancreatic oncogenes in zebrafish using the Gal4/UAS system. Methods Cell Biol 105:367–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely apologize to those colleagues whose work was not included in this review. Funding for this effort was supported in part by the NIH (R01AR063850 to C.C.), the Department of Defense (CA120099 to C.C.), the Kimmel Scholar Award to C.C., and the American Cancer Society Research Scholar Award to C.C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Craig J. Ceol or Yariv Houvras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ceol, C.J., Houvras, Y. (2016). Uncharted Waters: Zebrafish Cancer Models Navigate a Course for Oncogene Discovery. In: Langenau, D. (eds) Cancer and Zebrafish. Advances in Experimental Medicine and Biology, vol 916. Springer, Cham. https://doi.org/10.1007/978-3-319-30654-4_1

Download citation

Publish with us

Policies and ethics