Skip to main content

Interpretation of the Effects of Microwaves

  • Chapter
  • First Online:
Book cover Milestones in Microwave Chemistry

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

During the past three decades of microwave (MW) assisted organic chemistry, the initial observations of unexpected reaction behavior obtained in MW reactors grew to a general understanding of MW effects. This chapter aims to present the currently accepted theories of MW rate enhancements, and a few of the main steps leading to today’s understanding of these phenomena. Modern experimental techniques in MW chemistry revealed the fundamental role of temperature in interpreting the outcome of MW heated experiments. However, temperature can be realized on different spatial scales, which will be used as the basis of our classification. This way, the phenomena associated with MW heating are differentiated between macroscopic and microscopic effects, both of which will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Commonly used materials for this purpose are WeflonTM or Carboflon® (graphite loaded forms of Teflon®) and silicon carbide (SiC).

  2. 2.

    This is achieved by the feedback control of the applied MW power, based on the signal of the applied temperature probe.

  3. 3.

    The achievable temperature is limited by the volatility (vapor pressure at the target temperature) of the solvent and the pressure rating of the MW instrument. The pressure control mechanism is also critical to the maximal pressure value.

  4. 4.

    Wall effects are often harmful in conventional heating, e.g., leading to decomposition of products, catalyst deactivation.

  5. 5.

    This is achieved by using a reflux condenser, similarly to the practice used in conventional heating.

  6. 6.

    The bulky anion was chosen for solubility reasons.

  7. 7.

    Deuterated solvent was used for convenient NMR conversion determination.

References

  1. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282. doi:10.1016/S0040-4039(00)83996-9

    Article  CAS  Google Scholar 

  2. Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948. doi:10.1016/S0040-4039(00)85103-5

    Article  CAS  Google Scholar 

  3. Gedye RN, Smith FE, Westaway KC (1988) The rapid synthesis of organic compounds in microwave ovens. Can J Chem 66:17–26. doi:10.1139/v88-003

    Article  CAS  Google Scholar 

  4. Berlan J, Giboreau P, Lefeuvre S, Marchand C (1991) Synthese organique sous champ microondes: premier exemple d’activation specifique en phase homogene. Tetrahedron Lett 32:2363–2366. doi:10.1016/S0040-4039(00)79924-2

    Article  CAS  Google Scholar 

  5. Laurent R, Laporterie A, Dubac J, Berlan J, Lefeuvre S, Audhuy M (1992) Specific activation by microwaves: myth or reality? J Org Chem 57:7099–7102. doi:10.1021/jo00052a022

    Article  CAS  Google Scholar 

  6. Raner KD, Strauss CR, Vyskoc F, Mokbel L (1993) A comparison of reaction kinetics observed under microwave irradiation and conventional heating. J Org Chem 58:950–953. doi:10.1021/jo00056a031

    Article  CAS  Google Scholar 

  7. Gedye RN, Wei JB (1998) Rate enhancement of organic reactions by microwaves at atmospheric pressure. Can J Chem 76:525–532. doi:10.1139/v98-075

    CAS  Google Scholar 

  8. Berlan J (1995) Microwaves in chemistry: another way of heating reaction mixtures. Radiat Phys Chem 45:581–589. doi:10.1016/0969-806X(94)00072-R

    Article  CAS  Google Scholar 

  9. Langa F, de la Cruz P, de la Hoz A, Díaz-Ortiz A, Díez-Barra E (1997) Microwave irradiation: more than just a method for accelerating reactions. Contemp Org Synth 4:373–386. doi:10.1039/co9970400373

    Article  CAS  Google Scholar 

  10. Kranjc K, Kocevar M (2010) Microwave-assisted organic synthesis: general considerations and transformations of heterocyclic compounds. Curr Org Chem 14:1050–1074. doi:10.2174/138527210791130488

    Article  CAS  Google Scholar 

  11. Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43:6250–6284. doi:10.1002/anie.200400655

    Article  CAS  Google Scholar 

  12. Kappe CO, Stadler A, Dallinger D (2012) Microwave theory. In: Microwaves in organic and medicinal chemistry, 2nd edn. Wiley-VCH, Weinheim, pp 9–39. doi:10.1002/9783527647828.ch2

  13. de la Hoz A, Díaz-Ortiz A, Moreno A (2005) Microwaves in organic synthesis. Thermal and non-thermal microwave effects. Chem Soc Rev 34:164–178. doi:10.1039/b411438h

    Article  Google Scholar 

  14. de la Hoz A, Díaz-Ortiz A, Moreno A (2007) Review on non-thermal effects of microwave irradiation in organic synthesis. J Microw Power Electromagn Energy 41:45–47

    Google Scholar 

  15. Mingos DMP, Baghurst DR (1991) Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1–47. doi:10.1039/cs9912000001

    Article  CAS  Google Scholar 

  16. Gabriel C, Gabriel S, Grant EH, Halstead BSJ, Mingos DMP (1998) Dielectric parameters relevant to microwave dielectric heating. Chem Soc Rev 27:213–224. doi:10.1039/a827213z

    Google Scholar 

  17. Bogdal D (2005) Interaction of microwaves with different materials. In: Microwave-assisted organic synthesis, vol 25. Tetrahedron Organic Chemistry Series. Elsevier, Oxford, UK, pp 1–11. doi:10.1016/S1460-1567(05)80014-5

    Google Scholar 

  18. Stuerga D (2012) Microwave-materials interactions and dielectric properties: from molecules and macromolecules to solids and colloidal suspensions. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 1–56. doi:10.1002/9783527651313.ch1

    Google Scholar 

  19. Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, Matthews, NC

    Google Scholar 

  20. Schmink JR, Leadbeater NE (2010) Microwave heating as a tool for sustainable chemistry. In: Leadbeater NE (ed) Microwave heating as a tool for sustainable chemistry. CRC Press, Boca Raton, FL, pp 1–24. doi:10.1201/9781439812709-2

  21. Stadler A, Kappe CO (2001) High-Speed couplings and cleavages in microwave-heated, solid-phase reactions at high temperatures. Eur J Org Chem 2001:919–925. doi:10.1002/1099-0690(200103)2001:5<919::AID-EJOC919>3.0.CO;2-V

    Google Scholar 

  22. Obermayer D, Kappe CO (2010) On the importance of simultaneous infrared/fiber-optic temperature monitoring in the microwave-assisted synthesis of ionic liquids. Org Biomol Chem 8:114–121. doi:10.1039/b918407d

    Article  CAS  Google Scholar 

  23. Kremsner JM, Kappe CO (2006) Silicon carbide passive heating elements in microwave-assisted organic synthesis. J Org Chem 71:4651–4658. doi:10.1021/jo060692v

    Article  CAS  Google Scholar 

  24. Bogdał D, Prociak A (2007) Fundamentals of microwaves. In: Microwave-enhanced polymer chemistry and technology. Blackwell Publishing Ltd, Oxford, UK, pp 3–32. doi:10.1002/9780470390276.ch1

  25. Kremsner JM, Kappe CO (2005) Microwave-assisted organic synthesis in near-critical water at 300 °C—a proof-of-concept study. Eur J Org Chem 2005:3672–3679. doi:10.1002/ejoc.200500324

    Article  CAS  Google Scholar 

  26. Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67:3145–3148. doi:10.1021/jo016297g

    Article  CAS  Google Scholar 

  27. Van der Eycken E, Appukkuttan P, De Borggraeve W, Dehaen W, Dallinger D, Kappe CO (2002) High-speed microwave-promoted Hetero-Diels–Alder Reactions of 2(1H)-Pyrazinones in ionic liquid doped solvents. J Org Chem 67:7904–7907. doi:10.1021/jo0263216

    Article  CAS  Google Scholar 

  28. Hoffmann J, Nüchter M, Ondruschka B, Wasserscheid P (2003) Ionic liquids and their heating behaviour during microwave irradiation—a state of the art report and challenge to assessment. Green Chem 5:296–299. doi:10.1039/b212533a

    Article  CAS  Google Scholar 

  29. Leadbeater N, Torenius H, Tye H (2004) Microwave-promoted organic synthesis using ionic liquids: a mini review. Comb Chem High Throughput Screen 7:511–528. doi:10.2174/1386207043328562

    Article  CAS  Google Scholar 

  30. Habermann J, Ponzi S, Ley SV (2005) Organic chemistry in ionic liquids using non-thermal energy-transfer processes. Mini Rev Org Chem 2:125–137. doi:10.2174/1570193053544454

    Article  CAS  Google Scholar 

  31. Hohmann E, Keglevich G, Greiner I (2008) The effect of onium salt additives on the Diels-Alder reactions of a 1-Phenyl-1,2-dihydrophosphinine oxide under microwave conditions. Phosphorus Sulfur Silicon Relat Elem 182:2351–2357. doi:10.1080/10426500701441473

    Article  CAS  Google Scholar 

  32. Besson T, Kappe CO (2012) Microwave Susceptors. In: de la Hoz A, Loupy A (eds) Microwaves in Organic Synthesis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 297–346. doi:10.1002/9783527651313.ch7

    Google Scholar 

  33. Garrigues B, Laurent R, Laporte C, Laporterie A, Dubac J (1996) Microwave-assisted carbonyl Diels-Alder and Carbonyl-Ene reactions supported on graphite. Liebigs Ann 1996:743–744. doi:10.1002/jlac.199619960516

    Article  Google Scholar 

  34. Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave-assisted chemical reactions. Chem Eng Technol 26:1207–1216. doi:10.1002/ceat.200301836

    Article  CAS  Google Scholar 

  35. Razzaq T, Kremsner JM, Kappe CO (2008) Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. J Org Chem 73:6321–6329. doi:10.1021/jo8009402

    Article  CAS  Google Scholar 

  36. Obermayer D, Gutmann B, Kappe CO (2009) Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. Angew Chem Int Ed 48:8321–8324. doi:10.1002/anie.200904185

    Article  CAS  Google Scholar 

  37. Gutmann B, Obermayer D, Reichart B, Prekodravac B, Irfan M, Kremsner JM, Kappe CO (2010) Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors. Chem Eur J 16:12182–12194. doi:10.1002/chem.201001703

    Article  CAS  Google Scholar 

  38. Kappe CO (2013) Unraveling the mysteries of microwave chemistry using silicon carbide reactor technology. Acc Chem Res 46:1579–1587. doi:10.1021/ar300318c

    Article  CAS  Google Scholar 

  39. Strauss CR, Trainor RW (1995) Developments in microwave-assisted organic chemistry. Aust J Chem 48:1665–1692. doi:10.1071/CH9951665

    Article  CAS  Google Scholar 

  40. Strauss CR (2009) On scale up of organic reactions in closed vessel microwave systems. Org Process Res Dev 13:915–923. doi:10.1021/op900194z

    Article  CAS  Google Scholar 

  41. Strauss CR, Rooney DW (2010) Accounting for clean, fast and high yielding reactions under microwave conditions. Green Chem 12:1340–1344. doi:10.1039/c0gc00024h

    Article  CAS  Google Scholar 

  42. Damm M, Glasnov TN, Kappe CO (2010) Translating high-temperature microwave chemistry to scalable continuous flow processes. Org Process Res Dev 14:215–224. doi:10.1021/op900297e

    Article  CAS  Google Scholar 

  43. Chebanov VA, Saraev VE, Desenko SM, Chernenko VN, Shishkina SV, Shishkin OV, Kobzar KM, Kappe CO (2007) One-pot, multicomponent route to pyrazoloquinolizinones. Org Lett 9:1691–1694. doi:10.1021/ol070411l

    Article  CAS  Google Scholar 

  44. Siskin M, Katritzky AR (1991) Reactivity of organic compounds in hot water: geochemical and technological implications. Science 254:231–237. doi:10.1126/science.254.5029.231

    Article  CAS  Google Scholar 

  45. Krammer P, Mittelstädt S, Vogel H (1999) Investigating the synthesis potential in supercritical water. Chem Eng Technol 22:126–130. doi:10.1002/(SICI)1521-4125(199902)22:2<126::AID-CEAT126>3.0.CO;2-4

    Google Scholar 

  46. Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591. doi:10.1021/cr0509410

    Article  CAS  Google Scholar 

  47. Polshettiwar V, Varma RS (2008) Aqueous microwave chemistry: a clean and green synthetic tool for rapid drug discovery. Chem Soc Rev 37:1546–1557. doi:10.1039/b716534j

    Article  CAS  Google Scholar 

  48. Geuens J, Kremsner JM, Nebel BA, Schober S, Dommisse RA, Mittelbach M, Tavernier S, Kappe CO, Maes BUW (2008) Microwave-assisted catalyst-free transesterification of triglycerides with 1-Butanol under supercritical conditions. Energy Fuels 22:643–645. doi:10.1021/ef700617q

    Article  CAS  Google Scholar 

  49. Moseley JD, Lenden P, Thomson AD, Gilday JP (2007) The importance of agitation and fill volume in small scale scientific microwave reactors. Tetrahedron Lett 48:6084–6087. doi:10.1016/j.tetlet.2007.06.147

    Article  CAS  Google Scholar 

  50. Mingos DMP (2005) Theoretical aspects of microwave dielectric heating. In: Tierney JP, Lidström P (eds) Microwave assisted organic synthesis. Blackwell Publishing Ltd., Oxford, UK, pp 1–22. doi:10.1002/9781444305548.ch1

  51. de la Hoz A, Díaz-Ortiz A, Moreno A (2004) Selectivity in organic synthesis under microwave irradiation. Curr Org Chem 8:903–918. doi:10.2174/1385272043370429

    Article  Google Scholar 

  52. Kappe CO (2008) Microwave dielectric heating in synthetic organic chemistry. Chem Soc Rev 37:1127–1139. doi:10.1039/b803001b

    Article  CAS  Google Scholar 

  53. Díaz-Ortiz Á, de la Hoz A, Carrillo JR, Herrero MA (2012) Selectivity modifications under microwave irradiation. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 209–244. doi:10.1002/9783527651313.ch5

    Google Scholar 

  54. Yeboah KA, Boyd JD, Kyeremateng KA, Shepherd CC, Ingersoll IM, Jackson DL, Holland AW (2014) Large accelerations from small thermal differences: case studies and conventional reproduction of microwave effects on palladium couplings. Reac Kinet Mech Cat 112:295–304. doi:10.1007/s11144-014-0733-z

    Article  CAS  Google Scholar 

  55. Abramovitch RA, Abramovitch DA, Iyanar K, Tamareselvy K (1991) Application of microwave energy to organic synthesis: improved technology. Tetrahedron Lett 32:5251–5254. doi:10.1016/S0040-4039(00)92356-6

    Article  CAS  Google Scholar 

  56. Stuerga D, Gonon K, Lallemant M (1993) Microwave heating as a new way to induce selectivity between competitive reactions. Application to isomeric ratio control in sulfonation of naphthalene. Tetrahedron 49:6229–6234. doi:10.1016/S0040-4020(01)87961-8

    Article  CAS  Google Scholar 

  57. Almena I, Díaz-Ortiz A, Díez-Barra E, de la Hoz A, Loupy A (1996) Solvent-Free Benzylations of 2-Pyridone. Regiospecific N- or C-alkylation. Chem Lett 25:333–334. doi:10.1246/cl.1996.333

    Google Scholar 

  58. Loupy A, Petit A, Hamelin J, Texier-Boullet F, Jacquault P, Mathé D (1998) New solvent-free organic synthesis using focused microwaves. Synthesis 1998:1213–1234. doi:10.1055/s-1998-6083

    Article  Google Scholar 

  59. Varma RS (1999) Solvent-free organic syntheses. Green Chem 1:43–55. doi:10.1039/a808223e

    Article  CAS  Google Scholar 

  60. Gawande MB, Bonifácio VDB, Luque R, Branco PS, Varma RS (2014) Solvent-free and catalysts-free chemistry: a benign pathway to sustainability. ChemSusChem 7:24–44. doi:10.1002/cssc.201300485

    Article  CAS  Google Scholar 

  61. Keglevich G, Dudás E (2007) Microwave-promoted efficient synthesis of 2-Phosphabicyclo[2.2.2]octadiene- and Octene-2-oxides under solvent-free conditions in Diels-Alder reaction. Synth Commun 37:3191–3199. doi:10.1080/00397910701547532

    Article  CAS  Google Scholar 

  62. Schanche J-S (2003) Microwave synthesis solutions from personal chemistry. Molec Divers 7:293–300. doi:10.1023/B:MODI.0000006866.38392.f7

    Article  CAS  Google Scholar 

  63. Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47. doi:10.1021/jo7022697

    Article  CAS  Google Scholar 

  64. Sturm GSJ, Verweij MD, van Gerven T, Stankiewicz AI, Stefanidis GD (2012) On the effect of resonant microwave fields on temperature distribution in time and space. Int J Heat Mass Transfer 55:3800–3811. doi:10.1016/j.ijheatmasstransfer.2012.02.065

    Google Scholar 

  65. Larhed M, Hallberg A (1996) Microwave-promoted palladium-catalyzed coupling reactions. J Org Chem 61:9582–9584. doi:10.1021/jo9612990

    Article  CAS  Google Scholar 

  66. Dallinger D, Irfan M, Suljanovic A, Kappe CO (2010) An investigation of wall effects in microwave-assisted ring-closing metathesis and cyclotrimerization reactions. J Org Chem 75:5278–5288. doi:10.1021/jo1011703

    Article  CAS  Google Scholar 

  67. Bond G, Moyes RB, Pollington SP, Whan DA (1991) The superheating of liquids by microwave radiation. Chem Ind 1991:686–687

    Google Scholar 

  68. Baghurst DR, Mingos DMP (1992) Superheating effects associated with microwave dielectric heating. J Chem Soc, Chem Commun 1992:674–677. doi:10.1039/c39920000674

    Article  Google Scholar 

  69. Saillard R, Poux M, Berlan J, Audhuy-Peaudecerf M (1995) Microwave heating of organic solvents: thermal effects and field modelling. Tetrahedron 51:4033–4042. doi:10.1016/0040-4020(95)00144-W

    Article  CAS  Google Scholar 

  70. Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57:9199–9223. doi:10.1016/S0040-4020(01)00905-X

    Article  CAS  Google Scholar 

  71. Chemat F, Esveld E (2001) Microwave super-heated boiling of organic liquids: origin, effect and application. Chem Eng Technol 24:735–744. doi:10.1002/1521-4125(200107)24:7<735::AID-CEAT735>3.0.CO;2-H

    Google Scholar 

  72. Dudley GB, Stiegman AE, Rosana MR (2013) Correspondence on microwave effects in organic synthesis. Angew Chem Int Ed 52:7918–7923. doi:10.1002/anie.201301539

    Article  CAS  Google Scholar 

  73. Kappe CO (2013) Reply to the correspondence on microwave effects in organic synthesis. Angew Chem Int Ed 52:7924–7928. doi:10.1002/anie.201304368

    Article  CAS  Google Scholar 

  74. Klán P, Literák J, Relich S (2001) Molecular photochemical thermometers: investigation of microwave superheating effects by temperature dependent photochemical processes. J Photochem Photobiol A 143:49–57. doi:10.1016/S1010-6030(01)00481-6

    Google Scholar 

  75. Dressen MHCL, van de Kruijs BHP, Meuldijk J, Vekemans JAJM, Hulshof LA (2007) Vanishing microwave effects: influence of heterogeneity. Org Process Res Dev 11:865–869. doi:10.1021/op700080t

    Article  CAS  Google Scholar 

  76. Dressen MHCL, van de Kruijs BHP, Meuldijk J, Vekemans JAJM, Hulshof LA (2011) Variable microwave effects in the synthesis of ureidopyrimidinones: the role of heterogeneity. Org Process Res Dev 15:140–147. doi:10.1021/op100202j

    Article  CAS  Google Scholar 

  77. Conner WC, Tompsett GA (2008) How could and do microwaves influence chemistry at interfaces? J Phys Chem B 112:2110–2118. doi:10.1021/jp0775247

    Article  CAS  Google Scholar 

  78. Tsukahara Y, Higashi A, Yamauchi T, Nakamura T, Yasuda M, Baba A, Wada Y (2010) In situ observation of nonequilibrium local heating as an origin of special effect of microwave on chemistry. J Phys Chem C 114:8965–8970. doi:10.1021/jp100509h

    Article  CAS  Google Scholar 

  79. Kabb CP, Carmean RN, Sumerlin BS (2015) Probing the surface-localized hyperthermia of gold nanoparticles in a microwave field using polymeric thermometers. Chem Sci 6:5662–5669. doi:10.1039/C5SC01535A

    Article  CAS  Google Scholar 

  80. Turner MD, Laurence RL, Conner WC, Yngvesson KS (2000) Microwave radiation’s influence on sorption and competitive sorption in zeolites. AlChE J 46:758–768. doi:10.1002/aic.690460410

    Article  CAS  Google Scholar 

  81. Blanco C, Auerbach SM (2002) Microwave-driven zeolite–guest systems show athermal effects from nonequilibrium molecular dynamics. J Am Chem Soc 124:6250–6251. doi:10.1021/ja017839e

    Article  CAS  Google Scholar 

  82. Blanco C, Auerbach SM (2003) Nonequilibrium molecular dynamics of microwave-driven zeolite–guest systems: loading dependence of athermal effects. J Phys Chem B 107:2490–2499. doi:10.1021/jp026959l

    Article  CAS  Google Scholar 

  83. Hájek M (2006) Microwave catalysis in organic synthesis. In: Loupy A (ed) Microwaves in organic synthesis, 2nd edn. Wiley-VCH, Weinheim, Germany, pp 615–652. doi:10.1002/9783527619559.ch13

  84. Will H, Scholz P, Ondruschka B (2002) Heterogene Gasphasenkatalyse im Mikrowellenfeld. Chem Ing Tech 74:1057–1067. doi:10.1002/1522-2640(20020815)74:8<1057::AID-CITE1057>3.0.CO;2-3

    Google Scholar 

  85. Zhang X, Hayward DO, Mingos DMP (2003) Effects of microwave dielectric heating on heterogeneous catalysis. Catal Lett 88:33–38. doi:10.1023/A:1023530715368

    Article  CAS  Google Scholar 

  86. Durka T, Van Gerven T, Stankiewicz A (2009) Microwaves in heterogeneous gas-phase catalysis: experimental and numerical approaches. Chem Eng Technol 32:1301–1312. doi:10.1002/ceat.200900207

    Article  CAS  Google Scholar 

  87. Zhang X, Hayward DO, Mingos DMP (1999) Apparent equilibrium shifts and hot-spot formation for catalytic reactions induced by microwave dielectric heating. Chem Commun 1999:975–976. doi:10.1039/a901245a

    Article  Google Scholar 

  88. Seyfried L, Garin F, Maire G, Thiebaut JM, Roussy G (1994) Microwave electromagnetic-field effects on reforming catalysts. 1. Higher Selectivity in 2-Methylpentane Isomerization on alumina-supported Pt catalysts. J Catal 148:281–287. doi:10.1006/jcat.1994.1209

    Google Scholar 

  89. Perry WL, Katz JD, Rees D, Paffet MT, Datye AK (1997) Kinetics of the microwave-heated CO oxidation reaction over alumina-supported Pd and Pt catalysts. J Catal 171:431–438. doi:10.1006/jcat.1997.1824

    Article  CAS  Google Scholar 

  90. Vanier G (2007) Simple and efficient microwave-assisted hydrogenation reactions at moderate temperature and pressure. Synlett 2007:131–135. doi:10.1055/s-2006-958428

    Article  CAS  Google Scholar 

  91. Heller E, Lautenschläger W, Holzgrabe U (2005) Microwave-enhanced hydrogenations at medium pressure using a newly constructed reactor. Tetrahedron Lett 46:1247–1249. doi:10.1016/j.tetlet.2005.01.002

    Article  CAS  Google Scholar 

  92. Leskovsek S, Smidovnik A, Koloini T (1994) Kinetics of catalytic transfer hydrogenation of soybean oil in microwave and thermal field. J Org Chem 59:7433–7436. doi:10.1021/jo00103a041

    Article  CAS  Google Scholar 

  93. Parvulescu AN, Van der Eycken E, Jacobs PA, De Vos DE (2008) Microwave-promoted racemization and dynamic kinetic resolution of chiral amines over Pd on alkaline earth supports and lipases. J Catal 255:206–212. doi:10.1016/j.jcat.2008.02.005

    Article  CAS  Google Scholar 

  94. Arvela RK, Leadbeater NE (2005) Suzuki coupling of aryl chlorides with phenylboronic acid in water, using microwave heating with simultaneous cooling. Org Lett 7:2101–2104. doi:10.1021/ol0503384

    Article  CAS  Google Scholar 

  95. Baxendale IR, Griffiths-Jones CM, Ley SV, Tranmer GK (2006) Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. Chem Eur J 12:4407–4416. doi:10.1002/chem.200501400

    Article  CAS  Google Scholar 

  96. Irfan M, Fuchs M, Glasnov TN, Kappe CO (2009) Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: an evaluation of the role of selective catalyst heating. Chem Eur J 15:11608–11618. doi:10.1002/chem.200902044

    Article  CAS  Google Scholar 

  97. Glasnov TN, Findenig S, Kappe CO (2009) Heterogeneous versus homogeneous palladium catalysts for ligandless Mizoroki-Heck reactions: a comparison of batch/microwave and continuous-flow processing. Chem Eur J 15:1001–1010. doi:10.1002/chem.200802200

    Article  CAS  Google Scholar 

  98. Bogdal D, Lukasiewicz M, Pielichowski J, Miciak A, Bednarz S (2003) Microwave-assisted oxidation of alcohols using Magtrieve™. Tetrahedron 59:649–653. doi:10.1016/S0040-4020(02)01533-8

    Article  CAS  Google Scholar 

  99. Lukasiewicz M, Bogdal D, Pielichowski J (2003) Microwave-assisted oxidation of side chain Arenes by Magtrieve™. Adv Synth Catal 345:1269–1272. doi:10.1002/adsc.200303131

    Article  CAS  Google Scholar 

  100. Stuerga D, Gaillard P (1996) Microwave heating as a new way to induce localized enhancements of reaction rate. Non-isothermal and heterogeneous kinetics. Tetrahedron 52:5505–5510. doi:10.1016/0040-4020(96)00241-4

    Article  CAS  Google Scholar 

  101. Baghurst DR, Mingos DMP (1988) Application of microwave heating techniques for the synthesis of solid state inorganic compounds. J Chem Soc Chem Commun 1988:829–830. doi:10.1039/c39880000829

    Article  Google Scholar 

  102. Kniep R (1993) Fast solid-state chemistry: reactions under the influence of microwaves. Angew Chem Int Ed 32:1411–1412. doi:10.1002/anie.199314111

    Article  Google Scholar 

  103. Strauss CR, Varma RS (2006) Microwaves in green and sustainable chemistry. In: Larhed M, Olofsson K (eds) Microwave methods in organic synthesis. Springer, Berlin, Germany, pp 199–231. doi:10.1007/128_060

  104. Varma RS, Baig RBN (2012) Organic synthesis using microwaves and supported reagents. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 427–486. doi:10.1002/9783527651313.ch10

    Google Scholar 

  105. Raner KD, Strauss CR, Trainor RW, Thorn JS (1995) A new microwave reactor for batchwise organic synthesis. J Org Chem 60:2456–2460. doi:10.1021/jo00113a028

    Article  CAS  Google Scholar 

  106. Nilsson P, Larhed M, Hallberg A (2001) Highly regioselective, sequential, and multiple palladium-catalyzed arylations of vinyl ethers carrying a coordinating auxiliary: an example of a Heck triarylation process. J Am Chem Soc 123:8217–8225. doi:10.1021/ja011019k

    Article  CAS  Google Scholar 

  107. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem Int Ed 50:11312–11359. doi:10.1002/anie.201101274

    Article  CAS  Google Scholar 

  108. Washington AL, Strouse GF (2008) Microwave synthesis of CdSe and CdTe nanocrystals in nonabsorbing alkanes. J Am Chem Soc 130:8916–8922. doi:10.1021/ja711115r

    Article  CAS  Google Scholar 

  109. Washington AL, Strouse GF (2009) Selective microwave absorption by trioctyl phosphine selenide: does it play a role in producing multiple sized quantum dots in a single reaction? Chem Mater 21:2770–2776. doi:10.1021/cm900305j

    Article  CAS  Google Scholar 

  110. Young DD, Nichols J, Kelly RM, Deiters A (2008) Microwave activation of enzymatic catalysis. J Am Chem Soc 130:10048–10049. doi:10.1021/ja802404g

    Article  CAS  Google Scholar 

  111. Copty A, Sakran F, Popov O, Ziblat R, Danieli T, Golosovsky M, Davidov D (2005) Probing of the microwave radiation effect on the green fluorescent protein luminescence in solution. Synth Met 155:422–425. doi:10.1016/j.synthmet.2005.09.028

    Article  CAS  Google Scholar 

  112. van de Kruijs BHP, Dressen MHCL, Meuldijk J, Vekemans JAJM, Hulshof LA (2010) Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation. Org Biomol Chem 8:1688–1694. doi:10.1039/b926391h

    Article  CAS  Google Scholar 

  113. Gutmann B, Schwan AM, Reichart B, Gspan C, Hofer F, Kappe CO (2011) Activation and deactivation of a chemical transformation by an electromagnetic field: evidence for specific microwave effects in the formation of Grignard reagents. Angew Chem Int Ed 50:7636–7640. doi:10.1002/anie.201100856

    Article  CAS  Google Scholar 

  114. Jahngen EGE, Lentz RR, Pesheck PS, Sackett PH (1990) Hydrolysis of adenosine triphosphate by conventional or microwave heating. J Org Chem 55:3406–3409. doi:10.1021/jo00297a083

    Article  CAS  Google Scholar 

  115. Nüchter M, Ondruschka B, Weiß D, Beckert R, Bonrath W, Gum A (2005) Contribution to the qualification of technical microwave systems and to the validation of microwave-assisted reactions and processes. Chem Eng Technol 28:871–881. doi:10.1002/ceat.200500136

    Article  CAS  Google Scholar 

  116. Durka T, Stefanidis GD, Gerven TV, Stankiewicz A (2010) On the accuracy and reproducibility of fiber optic (FO) and infrared (IR) temperature measurements of solid materials in microwave applications. Meas Sci Technol 21:45108–45108. doi:10.1088/0957-0233/21/4/045108

    Google Scholar 

  117. Hayden S, Damm M, Kappe CO (2013) On the importance of accurate internal temperature measurements in the microwave dielectric heating of viscous systems and polymer synthesis. Macromol Chem Phys 214:423–434. doi:10.1002/macp.201200449

    Article  CAS  Google Scholar 

  118. Kappe CO (2013) How to measure reaction temperature in microwave-heated transformations. Chem Soc Rev 42:4977–4990. doi:10.1039/c3cs00010a

    Article  CAS  Google Scholar 

  119. Mason TJ, Lorimer JP (1989) Sonochemistry: theory, applications and uses of ultrasound in chemistry. Ellis Horwood Series in Physical Chemistry. Ellis Horwood, New York, NY

    Google Scholar 

  120. Keglevich G, Greiner I, Mucsi Z (2015) An interpretation of the rate enhancing effect of microwaves—modelling the distribution and effect of local overheating—a case study. Curr Org Chem 19:1436–1440. doi:10.2174/1385272819666150528004505

    Article  CAS  Google Scholar 

  121. Huang W, Richert R (2008) The physics of heating by time-dependent fields: microwaves and water revisited. J Phys Chem B 112:9909–9913. doi:10.1021/jp8038187

    Article  CAS  Google Scholar 

  122. Rosana MR, Hunt J, Ferrari A, Southworth TA, Tao Y, Stiegman AE, Dudley GB (2014) Microwave-specific acceleration of a Friedel-Crafts reaction: evidence for selective heating in homogeneous solution. J Org Chem 79:7437–7450. doi:10.1021/jo501153r

    Article  CAS  Google Scholar 

  123. Dudley GB, Richert R, Stiegman AE (2015) On the existence of and mechanism for microwave-specific reaction rate enhancement. Chem Sci 6:2144–2152. doi:10.1039/C4SC03372H

    Article  CAS  Google Scholar 

  124. Hayes BL (2004) Recent advances in microwave-assisted synthesis. Aldrichimica Acta 37:66–77

    CAS  Google Scholar 

  125. Schmink JR, Leadbeater NE (2009) Probing “microwave effects” using Raman spectroscopy. Org Biomol Chem 7:3842–3846. doi:10.1039/b910591c

    Google Scholar 

  126. Lewis DA, Summers JD, Ward TC, McGrath JE (1992) Accelerated imidization reactions using microwave radiation. J Polym Sci, Part A Polym Chem 30:1647–1653. doi:10.1002/pola.1992.080300817

    Article  CAS  Google Scholar 

  127. Keglevich G, Kiss NZ, Jablonkai E, Bálint E, Mucsi Z (2015) The potential of microwave in organophosphorus syntheses. Phosphorus Sulfur Silicon Relat Elem 190:647–654. doi:10.1080/10426507.2014.989430

    Article  CAS  Google Scholar 

  128. Keglevich G, Kiss NZ, Mucsi Z, Körtvélyesi T (2012) Insights into a surprising reaction: The microwave-assisted direct esterification of phosphinic acids. Org Biomol Chem 10:2011–2018. doi:10.1039/C2OB06972E

    Article  CAS  Google Scholar 

  129. Keglevich G, Kiss NZ, Körtvélyesi T (2013) Microwave-assisted functionalization of phosphinic acids: amidations versus esterifications. Heteroat Chem 24:91–99. doi:10.1002/hc.21068

    Article  CAS  Google Scholar 

  130. Mucsi Z, Kiss NZ, Keglevich G (2014) A quantum chemical study on the mechanism and energetics of the direct esterification, thioesterification and amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide. RSC Adv 4:11948–11954. doi:10.1039/C3RA47456A

    Article  CAS  Google Scholar 

  131. Huang W, Richert R (2009) Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion. J Chem Phys 130:194509–194522. doi:10.1063/1.3139519

    Article  CAS  Google Scholar 

  132. Rosana MR, Tao Y, Stiegman AE, Dudley GB (2012) On the rational design of microwave-actuated organic reactions. Chem Sci 3:1240–1244. doi:10.1039/c2sc01003h

    Article  CAS  Google Scholar 

  133. Chen P-K, Rosana MR, Dudley GB, Stiegman AE (2014) Parameters affecting the microwave-specific acceleration of a chemical reaction. J Org Chem 79:7425–7436. doi:10.1021/jo5011526

    Article  CAS  Google Scholar 

  134. Kaiser NF, Bremberg U, Larhed M, Moberg C, Hallberg A (2000) Fast, convenient, and efficient molybdenum-catalyzed asymmetric allylic alkylation under noninert conditions: an example of microwave-promoted fast chemistry. Angew Chem Int Ed 39:3595–3598. doi:10.1002/1521-3773(20001016)39:20<3595::AID-ANIE3595>3.0.CO;2-S

    Google Scholar 

  135. Kappe CO, Pieber B, Dallinger D (2013) Microwave effects in organic synthesis: myth or reality? Angew Chem Int Ed 52:1088–1094. doi:10.1002/anie.201204103

    Article  CAS  Google Scholar 

  136. Baxendale IR, Lee A-L, Ley SV (2002) A concise synthesis of carpanone using solid-supported reagents and scavengers. J Chem Soc Perkin Trans 1(2002):1850–1857. doi:10.1039/b203388g

    Article  CAS  Google Scholar 

  137. Durand-Reville T, Gobbi LB, Gray BL, Ley SV, Scott JS (2002) Highly selective entry to the azadirachtin skeleton via a claisen rearrangement/radical cyclization sequence. Org Lett 4:3847–3850. doi:10.1021/ol0201557

    Article  CAS  Google Scholar 

  138. Baxendale IR, Ley SV, Nessi M, Piutti C (2002) Total synthesis of the amaryllidaceae alkaloid (+)-plicamine using solid-supported reagents. Tetrahedron 58:6285–6304. doi:10.1016/S0040-4020(02)00628-2

    Article  CAS  Google Scholar 

  139. Mayo KG, Nearhoof EH, Kiddle JJ (2002) Microwave-accelerated ruthenium-catalyzed olefin metathesis. Org Lett 4:1567–1570. doi:10.1021/ol025789s

    Article  CAS  Google Scholar 

  140. Garbacia S, Desai B, Lavastre O, Kappe CO (2003) Microwave-assisted ring-closing metathesis revisited. On the question of the nonthermal microwave effect. J Org Chem 68:9136–9139. doi:10.1021/jo035135c

    Article  CAS  Google Scholar 

  141. Rodríguez AM, Prieto P, de la Hoz A, Díaz-Ortiz A, García JI (2014) The issue of ‘molecular radiators’ in microwave-assisted reactions. Computational calculations on ring closing metathesis (RCM). Org Biomol Chem 12:2436–2445. doi:10.1039/c3ob42536c

    Article  CAS  Google Scholar 

  142. de la Hoz A, Díaz-Ortiz Á, Gómez MV, Prieto P, Migallón AS (2012) Elucidation of microwave effects: methods, theories, and predictive models. In: de la Hoz A, Loupy A (eds) Microwaves in Organic Synthesis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 245–295. doi:10.1002/9783527651313.ch6

    Google Scholar 

  143. Kuhnert N (2002) Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects? Angew Chem Int Ed 41:1863–1866. doi:10.1002/1521-3773(20020603)41:11<1863::AID-ANIE1863>3.0.CO;2-L

    Google Scholar 

  144. Strauss CR (2002) Microwave-assisted reactions in organic synthesis—are there any nonthermal microwave effects? Response to the highlight by N Kuhnert. Angew Chem Int Ed 41:3589–3590. doi:10.1002/1521-3773(20021004)41:19<3589::AID-ANIE3589>3.0.CO;2-Q

    Google Scholar 

  145. Jacob J, Chia LHL, Boey FYC (1995) Thermal and non-thermal interaction of microwave radiation with materials. J Mater Sci 30:5321–5327. doi:10.1007/BF00351541

    Article  CAS  Google Scholar 

  146. Perreux L, Loupy A, Petit A (2012) Nonthermal effects of microwaves in organic synthesis. In: de la Hoz A, Loupy A (eds) Microwaves in organic synthesis, 3rd edn. Wiley-VCH, Weinheim, Germany, pp 127–207. doi:10.1002/9783527651313.ch4

    Google Scholar 

  147. Hostyn S, Maes BUW, Van Baelen G, Gulevskaya A, Meyers C, Smits K (2006) Synthesis of 7H-indolo[2,3-c]quinolines: study of the Pd-catalyzed intramolecular arylation of 3-(2-bromophenylamino)quinolines under microwave irradiation. Tetrahedron 62:4676–4684. doi:10.1016/j.tet.2005.12.062

    Article  CAS  Google Scholar 

  148. Hosseini M, Stiasni N, Barbieri V, Kappe CO (2007) Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling. J Org Chem 72:1417–1424. doi:10.1021/jo0624187

    Article  CAS  Google Scholar 

  149. Hayes BL, Collins MJ (2004) Reaction and temperature control for high power microwave-assisted chemistry techniques. World Patent WO 04002617, 8 Jan 2004

    Google Scholar 

  150. Leadbeater NE, Pillsbury SJ, Shanahan E, Williams VA (2005) An assessment of the technique of simultaneous cooling in conjunction with microwave heating for organic synthesis. Tetrahedron 61:3565–3585. doi:10.1016/j.tet.2005.01.105

    Article  CAS  Google Scholar 

  151. Binner JGP, Hassine NA, Cross TE (1995) The possible role of the pre-exponential factor in explaining the increased reaction rates observed during the microwave synthesis of titanium carbide. J Mater Sci 30:5389–5393. doi:10.1007/BF00351548

    Article  CAS  Google Scholar 

  152. Haque E, Khan NA, Park JH, Jhung SH (2010) Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: a kinetic study. Chem Eur J 16:1046–1052. doi:10.1002/chem.200902382

    Article  CAS  Google Scholar 

  153. Qi X, Watanabe M, Aida TM, Smith RL (2010) Fast transformation of glucose and Di-/Polysaccharides into 5-Hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system. ChemSusChem 3:1071–1077. doi:10.1002/cssc.201000124

    Article  CAS  Google Scholar 

  154. Shibata C, Kashima T, Ohuchi K (1996) Nonthermal influence of microwave power on chemical reactions. Jpn J Appl Phys Part 1(35):316–319. doi:10.1143/JJAP.35.316

    Article  Google Scholar 

  155. Rybakov KI, Semenov VE (1994) Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field. Phys Rev B 49:64–68. doi:10.1103/PhysRevB.49.64

    Article  CAS  Google Scholar 

  156. Stuerga DAC, Gaillard P (1996) Microwave athermal effects in chemistry: a Myth’s autopsy. Part I: historical background and fundamentals of wave-matter interaction. J Microw Power Electromagn Energy 31:87–100

    Google Scholar 

  157. Stuerga DAC, Gaillard P (1996) Microwave athermal effects in chemistry: a Myth’s autopsy. Part II: orienting effects and thermodynamic consequences of electric field. J Microw Power Electromagn Energy 31:101–113

    Google Scholar 

  158. Adnadjevic BK, Jovanovic JD (2012) A comparative kinetics study on the isothermal heterogeneous acid-catalyzed hydrolysis of sucrose under conventional and microwave heating. J Mol Catal A Chem 356:70–77. doi:10.1016/j.molcata.2011.12.027

    Article  CAS  Google Scholar 

  159. Chen S-T, Chiou S-H, Wang K-T (1991) Enhancement of chemical reactions by microwave irradiation. J Chin Chem Soc 38:85–91. doi:10.1002/jccs.199100015

    Article  CAS  Google Scholar 

  160. Antonio C, Deam RT (2007) Can “microwave effects” be explained by enhanced diffusion? Phys Chem Chem Phys 9:2976–2982. doi:10.1039/b617358f

    Google Scholar 

  161. Loupy A, Maurel F, Sabatié-Gogová A (2004) Improvements in Diels-Alder cycloadditions with some acetylenic compounds under solvent-free microwave-assisted conditions: experimental results and theoretical approaches. Tetrahedron 60:1683–1691. doi:10.1016/j.tet.2003.11.042

    Article  CAS  Google Scholar 

  162. de Cózar A, Millán MC, Cebrián C, Prieto P, Díaz-Ortiz A, de la Hoz A, Cossío FP (2010) Computational calculations in microwave-assisted organic synthesis (MAOS). Application to cycloaddition reactions. Org Biomol Chem 8:1000–1009. doi:10.1039/b922730j

    Article  CAS  Google Scholar 

  163. Langa F, de la Cruz P, de la Hoz A, Espíldora E, Cossío FP, Lecea B (2000) Modification of regioselectivity in cycloadditions to C70 under microwave irradiation. J Org Chem 65:2499–2507. doi:10.1021/jo991710u

    Article  CAS  Google Scholar 

  164. Bose AK, Banik BK, Manhas MS (1995) Stereocontrol of β-lactam formation using microwave irradiation. Tetrahedron Lett 36:213–216. doi:10.1016/0040-4039(94)02225-Z

    Article  CAS  Google Scholar 

  165. Arrieta A, Lecea B, Cossío FP (1998) Origins of the stereodivergent outcome in the staudinger reaction between acyl chlorides and imines. J Org Chem 63:5869–5876. doi:10.1021/jo9804745

    Article  CAS  Google Scholar 

  166. Díaz-Ortiz A, de la Hoz A, Herrero MA, Prieto P, Sánchez-Migallón A, Cossío FP, Arrieta A, Vivanco S, Foces-Foces C (2003) Enhancing stereochemical diversity by means of microwave irradiation in the absence of solvent: synthesis of highly substituted nitroproline esters via 1,3-dipolar reactions. Molec Divers 7:175–180. doi:10.1023/B:MODI.0000006799.01924.2e

    Article  Google Scholar 

  167. Sun WC, Guy PM, Jahngen JH, Rossomando EF, Jahngen EGE (1988) Microwave-induced hydrolysis of phospho anhydride bonds in nucleotide triphosphates. J Org Chem 53:4414–4416. doi:10.1021/jo00253a047

    Article  CAS  Google Scholar 

  168. Pagnotta M, Pooley CLF, Gurland B, Choi M (1993) Microwave activation of the mutarotation of α-D-glucose: an example of an interinsic microwave effect. J Phys Org Chem 6:407–411. doi:10.1002/poc.610060705

    Article  CAS  Google Scholar 

  169. Adámek F, Hájek M (1992) Microwave-assisted catalytic addition of halocompounds to alkenes. Tetrahedron Lett 33:2039–2042. doi:10.1016/0040-4039(92)88135-R

    Article  Google Scholar 

  170. Zijlstra S, De Groot TJ, Kok LP, Visser GM, Vaalburg W (1993) Behavior of reaction mixtures under microwave conditions: use of sodium salts in microwave-induced N-[18F]fluoroalkylations of aporphine and tetralin derivatives. J Org Chem 58:1643–1645. doi:10.1021/jo00059a002

    Article  CAS  Google Scholar 

  171. Miklavc A (2001) Strong Acceleration of Chemical Reactions Occurring Through the Effects of Rotational Excitation on Collision Geometry. ChemPhysChem 2:552–555. doi:10.1002/1439-7641(20010917)2:8/9<552::AID-CPHC552>3.0.CO;2-5

    Google Scholar 

  172. Miklavc A (2004) Kinetic isotope effect in hydrogen transfer arising from the effects of rotational excitation and occurrence of hydrogen tunneling in molecular systems. J Chem Phys 121:1171–1174. doi:10.1063/1.1774162

    Article  CAS  Google Scholar 

  173. Bren U, Krzan A, Mavri J (2008) Microwave catalysis through rotationally hot reactive species. J Phys Chem A 112:166–171. doi:10.1021/jp709766c

    Article  CAS  Google Scholar 

  174. Kalhori S, Minaev B, Stone-Elander S, Elander N (2002) Quantum Chemical Model of an SN2 Reaction in a Microwave Field. J Phys Chem A 106:8516–8524. doi:10.1021/jp012643m

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bana, P., Greiner, I. (2016). Interpretation of the Effects of Microwaves. In: Keglevich, G. (eds) Milestones in Microwave Chemistry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-30632-2_4

Download citation

Publish with us

Policies and ethics