Skip to main content

The Use of MW in Organophosphorus Chemistry

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

The third chapter summarizes a special field, the application of the microwave (MW) technique in the synthesis of organophosphorus compounds. On the one hand, reactions are shown that are otherwise rather reluctant on traditional thermal heating. On the other hand, reactions are discussed, which, became more efficient (shorter reaction times and higher yields) on MW irradiation. Finally, the simplification of catalytic systems under MW conditions are surveyed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guenin E, Meziane D (2011) Microwave assisted phosphorus organic chemistry: A review. Curr Org Chem 15:3465–3485. doi:10.2174/138527211797374724

    Article  CAS  Google Scholar 

  2. Keglevich G, Grün A, Bálint E, Kiss NZ, Jablonkai E (2013) Microwave-assisted organophosphorus synthesis. Curr Org Chem 17:545–554. doi:10.2174/1385272811317050009

    Article  CAS  Google Scholar 

  3. Keglevich G, Greiner I (2014) The meeting of two disciplines: organophosphorus and green chemistry. Curr Green Chem 1:2–16. doi:10.2174/221334610101131218094831

    Article  CAS  Google Scholar 

  4. Keglevich G, Kiss NZ, Mucsi Z, Jablonkai E, Bálint E (2014) The synthesis of phosphinates: traditional versus green chemical approaches. Green Process Synth 3:103–110. doi:10.1515/gps-2013-0106

    CAS  Google Scholar 

  5. Keglevich G (2014) Microwave-assisted synthesis of P-heterocycles. Phosphorus, Sulfur Silicon Relat Elem 189:1266–1278. doi:10.1080/10426507.2014.885974

    Article  CAS  Google Scholar 

  6. Keglevich G, (2015) Application of microwave irradiation in the synthesis of P-heterocycles. In: Brahmachari G (ed) Green synthetic approaches for biologically relevant heterocycles. Elsevier, Amsterdam, pp 559–570. doi:10.1016/B978-0-12-800070-0.00020-7

    Google Scholar 

  7. Keglevich G, Grün A, Bagi P, Bálint E, Kiss N, Kovács R, Jablonkai E, Kovács T, Fogassy E, Greiner I (2015) Environmentally friendly chemistry with organophosphorus syntheses in focus. Per Polytechn Chem Eng 59:82–95. doi:10.3311/PPch.7317

    Article  CAS  Google Scholar 

  8. Keglevich G, Novak T, Vida L, Greiner I (2006) Microwave irradiation as an alternative to phase transfer catalysis in the liquid-solid phase, solvent-free C-alkylation of active methylene containing substrates. Green Chem 8:1073–1075. doi:10.1039/B610481A

    Article  CAS  Google Scholar 

  9. Keglevich G, Majrik K, Vida L, Greiner I (2008) Microwave irradiation as a green alternative to phase transfer catalysis: solid-liquid phase alkylation of active methylene containing substrates under solvent-free conditions. Lett Org Chem 5:224–228. doi:10.2174/157017808783955754

    Article  CAS  Google Scholar 

  10. Greiner I, Grün A, Ludányi K, Keglevich G (2011) Solid–liquid two-phase alkylation of tetraethyl methylenebisphosphonate under microwave irradiation. Heteroatom Chem 22:11–14. doi:10.1002/hc.20648

    Article  CAS  Google Scholar 

  11. Keglevich G, Grün A, Blastik Z, Greiner I (2011) Solid–liquid phase alkylation of P=O–functionalized CH acidic compounds utilizing phase transfer catalysis and microwave irradiation. Heteroatom Chem 22:174–179. doi:10.1002/hc.20673

    Article  CAS  Google Scholar 

  12. Grün A, Blastik Z, Drahos L, Keglevich G (2012) Microwave-assisted alkylation of diethyl ethoxycarbonylmethylphosphonate under solventless conditions. Heteroat Chem 23:241–246. doi:10.1002/hc.21009

    Article  Google Scholar 

  13. Keglevich G, Grün A (2015) Microwave irradiation as a substitute for phase transfer catalyst in C-alkylation reactions. Curr Green Chem 3:254–263. doi:10.2174/2213346102666141215212108

    Article  Google Scholar 

  14. Grün A, Bálint E, Keglevich G (2015) Solid–liquid phase C-alkylation of active methylene containing compounds under microwave conditions. Catalysts 5:634–652. doi:10.3390/catal5020634

    Article  Google Scholar 

  15. Keglevich G, Grün A, Bálint E (2013) Microwave irradiation and phase transfer catalysis in C-, O- and N-alkylation reactions. Curr Org Synth 10:751–763. doi:10.2174/1570179411310050006

    Article  CAS  Google Scholar 

  16. Grün A, Blastik Z, Drahos L, Keglevich G (2014) Dialkylation of diethyl ethoxycarbonylmethylphosphonate under microwave and solventless conditions. Heteroat Chem 25:107–113. doi:10.1002/hc.21142

    Article  Google Scholar 

  17. McBride JJ Jr, Grange L, Mais A (1963) Preparing esters of phosphinic acids. USA Patent US3092650, 04/20/1961

    Google Scholar 

  18. Quin LD (2000) A guide to organophosphorus chemistry. Wiley, New York

    Google Scholar 

  19. Kiss NZ, Keglevich G (2014) An overview of the synthesis of phosphinates and phosphinic amides. Curr Org Chem 18:2673–2690. doi:10.2174/1385272819666140829011741

    Article  CAS  Google Scholar 

  20. Keglevich G, Kiss NZ, Mucsi Z (2014) Synthesis of phosphinic acid derivatives; traditional versus up-to-date synthetic procedures. Chem Sci J 5:1–14. doi:10.4172/2150-3494.1000088

    Article  Google Scholar 

  21. Kiss NZ, Ludányi K, Drahos L, Keglevich G (2009) Novel synthesis of phosphinates by the microwave-assisted esterification of phosphinic acids. Synth Commun 39:2392–2404. doi:10.1080/00397910802654880

    Article  CAS  Google Scholar 

  22. Troev KD (2006) Reactivity of H-phosphonates. In: Chemistry and application of H-phosphonates. Elsevier, Amsterdam, pp 23–105. doi:10.1016/B978-044452737-0/50004-1

    Google Scholar 

  23. Keglevich G, Kiss NZ, Körtvélyesi T, Mucsi Z (2013) Direct esterification and amidation of phosphinic acids under microwave conditions. Phosphorus, Sulfur Silicon Relat Elem 188:29–32. doi:10.1080/10426507.2012.743542

    Article  CAS  Google Scholar 

  24. Keglevich G, Bálint E, Kiss NZ, Jablonkai E, Hegedűs L, Grün A, Greiner I (2011) Microwave-assisted esterification of phosphinic acids. Curr Org Chem 15:1802–1810. doi:10.2174/138527211795656570

    Article  CAS  Google Scholar 

  25. Keglevich G, Kiss NZ, Mucsi Z, Körtvélyesi T (2012) Insights into a surprising reaction: The microwave-assisted direct esterification of phosphinic acids. Org Biomol Chem 10:2011–2018. doi:10.1039/C2OB06972E

    Article  CAS  Google Scholar 

  26. Kiss NZ, Böttger É, Drahos L, Keglevich G (2013) Microwave-assisted direct esterification of cyclic phosphinic acids. Heteroat Chem 24:283–288. doi:10.1002/hc.21092

    Article  CAS  Google Scholar 

  27. Mucsi Z, Kiss NZ, Keglevich G (2014) A quantum chemical study on the mechanism and energetics of the direct esterification, thioesterification and amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide. RSC Adv 4:11948–11954. doi:10.1039/C3RA47456A

    Article  CAS  Google Scholar 

  28. Keglevich G, Kiss NZ, Drahos L, Körtvélyesi T (2013) Direct esterification of phosphinic acids under microwave conditions: extension to the synthesis of thiophosphinates and new mechanistic insights. Tetrahedron Lett 54:466–469. doi:10.1016/j.tetlet.2012.11.054

    Article  CAS  Google Scholar 

  29. Jablonkai E, Henyecz R, Milen M, Kóti J, Keglevich G (2014) T3P®-assisted esterification and amidation of phosphinic acids. Tetrahedron 70:8280–8285. doi:10.1016/j.tet.2014.09.021

    Article  CAS  Google Scholar 

  30. Jablonkai E, Milen M, Drahos L, Keglevich G (2013) Esterification of five-membered cyclic phosphinic acids under mild conditions using propylphosphonic anhydride (T3P®). Tetrahedron Lett 54:5873–5875. doi:10.1016/j.tetlet.2013.08.082

    Article  CAS  Google Scholar 

  31. Bálint E, Jablonkai E, Bálint M, Keglevich G (2010) Alkylating esterification of 1-hydroxy-3-phospholene oxides under solventless MW conditions. Heteroat Chem 21:211–214. doi:10.1002/hc.20596

    Google Scholar 

  32. Keglevich G, Bálint E, Karsai É, Grün A, Bálint M, Greiner I (2008) Chemoselectivity in the microwave-assisted solvent-free solid–liquid phase benzylation of phenols: O- versus C-alkylation. Tetrahedron Lett 49:5039–5042. doi:10.1016/j.tetlet.2008.06.051

    Article  CAS  Google Scholar 

  33. Keglevich G, Bálint E, Karsai É, Varga J, Grün A, Bálint M, Greiner I (2009) Heterogeneous phase alkylation of phenols making use of phase transfer catalysis and microwave irradiation. Lett Org Chem 6:535–539. doi:10.2174/157017809789869500

    Article  CAS  Google Scholar 

  34. Jablonkai E, Bálint E, Balogh GT, Drahos L, Keglevich G (2012) Cyclic phosphinates by the alkylation of a thermally unstable 1-hydroxy-1,2-dihydrophosphinine 1-oxide and a 3-hydroxy-3-phosphabicyclo[3.1.0]hexane 3-oxide. Phosphorus, Sulfur Silicon Relat Elem 187:357–363. doi:10.1080/10426507.2011.613876

    Article  CAS  Google Scholar 

  35. Bálint E, Tajti Á, Drahos L, Ilia G, Keglevich G (2013) Alcoholysis of dialkyl phosphites under microwave conditions. Curr Org Chem 17:555–562. doi:10.2174/1385272811317050010

    Article  Google Scholar 

  36. Keglevich G, Bálint E, Tajti Á, Mátravölgyi B, Balogh György T, Bálint M, Ilia G (2014) Microwave-assisted alcoholysis of dialkyl phosphites by ethylene glycol and ethanolamine. Pure Appl Chem 86:1723–1728. doi:10.1515/pac-2014-0601

    Article  CAS  Google Scholar 

  37. Keglevich G, Kiss NZ, Körtvélyesi T (2013) Microwave-assisted functionalization of phosphinic acids; amidations versus esterifications. Heteroat Chem 24:91–99. doi:10.1002/hc.21068

    Article  CAS  Google Scholar 

  38. Kiss NZ, Simon A, Drahos L, Huben K, Jankowski S, Keglevich G (2013) Synthesis of 1-amino-2,5-dihydro-1H-phosphole 1-oxides and their N-phosphinoyl derivatives, bis(2,5-dihydro-1H-phoshol-1-yl)amine P, P’-dioxides. Synthesis 45:199–204. doi:10.1055/s-0032-1316830

    CAS  Google Scholar 

  39. Kiss NZ, Rádai Z, Mucsi Z, Keglevich G (2015) Synthesis of bis(phosphinoyl)amines and phosphinoyl-phosphorylamines by the N-phosphinoylation and N-phosphorylation of 1-alkylamino-2,5-dihydro-1H-phosphole 1-oxides. Heteroat Chem 26:134–141. doi:10.1002/hc.21229

    Article  CAS  Google Scholar 

  40. Jablonkai E, Keglevich G (2014) P-C bond formation by coupling reaction utilizing >P(O)H species as the reagents. Curr Org Synth 11:429–453. doi:10.2174/15701794113109990066

    Article  CAS  Google Scholar 

  41. Jablonkai E, Keglevich G (2014) Advances and new variations of the Hirao reaction. Org Prep Proc Int 46:281–316. doi:10.1080/00304948.2014.922376

    Article  CAS  Google Scholar 

  42. Jablonkai E, Keglevich G (2013) P-Ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P-C coupling reaction of >P(O)H species and bromoarenes. Tetrahedron Lett 54:4185–4188. doi:10.1016/j.tetlet.2013.05.111

    Article  CAS  Google Scholar 

  43. Keglevich G, Jablonkai E, Balázs LB (2014) A “green” variation of the Hirao reaction: the P-C coupling of diethyl phosphite, alkyl phenyl-H-phosphinates and secondary phosphine oxides with bromoarenes using a P-ligand-free Pd(OAc)2 catalyst under microwave and solvent-free conditions. RSC Adv 4:22808–22816. doi:10.1039/C4RA03292F

    Article  CAS  Google Scholar 

  44. Amaya T, Abe Y, Inada Y, Hirao T (2014) Synthesis of self-doped conducting polyaniline bearing phosphonic acid. Tetrahedron Lett 55:3976–3978. doi:10.1016/j.tetlet.2014.04.115

    Article  CAS  Google Scholar 

  45. Jablonkai E, Balázs L, Keglevich G (2015) A P-ligand-free nickel-catalyzed variation of the Hirao reaction under microwave conditions. Curr Org Chem 19:197–202. doi:10.2174/1385272819666150114235413

    Article  CAS  Google Scholar 

  46. Kalek M, Ziadi A, Stawinski J (2008) Microwave-assisted palladium-catalyzed cross-coupling of aryl and vinyl halides with H-phosphonate diesters. Org Lett 10:4637–4640. doi:10.1021/ol801935r

    Article  CAS  Google Scholar 

  47. Andaloussi M, Lindh J, Sävmarker J, Sjöberg PJR, Larhed M (2009) Microwave-promoted palladium(II)-catalyzed C-P bond formation by using arylboronic acids or aryltrifluoroborates. Chem Eur J 15:13069–13074. doi:10.1002/chem.200901473

    Article  CAS  Google Scholar 

  48. Villemin D, Jaffrès P-A, Siméon F (1997) Rapid and efficient phosphonation of aryl halides catalysed by palladium under microwaves irradiation. Phosphorus, Sulfur Silicon Relat Elem 130:59–63. doi:10.1080/10426509708033697

    Article  CAS  Google Scholar 

  49. Rummelt SM, Ranocchiari M, van Bokhoven JA (2012) Synthesis of water-soluble phosphine oxides by Pd/C-catalyzed P–C coupling in water. Org Lett 14:2188–2190. doi:10.1021/ol300582y

    Article  CAS  Google Scholar 

  50. Jablonkai E, Keglevich G (2015) Catalyst-free P–C coupling reactions of halobenzoic acids and secondary phosphine oxides under microwave irradiation in water. Tetrahedron Lett 56:1638–1640. doi:10.1016/j.tetlet.2015.02.015

    Article  CAS  Google Scholar 

  51. Jablonkai E, Keglevich G (2015) A survey of the palladium–catalyzed Hirao reaction with emphasis on green chemical aspects. Curr Green Chem 2:379–391. doi:10.2174/2213346102999150630114117

    Article  CAS  Google Scholar 

  52. Jablonkai E, Keglevich G (2015) P–C coupling reactions under environmentally-friendly conditions. In: Petrova V (ed) Advances in engineering research, vol 10. Nova Science Publishers Inc, pp 99–125

    Google Scholar 

  53. Dzielak A, Mucha A (2015) Catalytic and MW-assisted Michaelis-Arbuzov reactions. Curr Green Chem 2:223–236. doi:10.2174/2213346102666150128195001

    Article  CAS  Google Scholar 

  54. Keglevich G, Grün A, Bölcskei A, Drahos L, Kraszni M, Balogh GT (2012) Synthesis and proton dissociation properties of arylphosphonates; a microwave-assisted catalytic Arbuzov reaction with aryl bromides. Heteroat Chem 23:574–582. doi:10.1002/hc.21053

    Article  CAS  Google Scholar 

  55. Keglevich G, Sipos M, Takács D, Greiner I (2007) A study on the Michael addition of dialkylphosphites to methylvinylketone. Heteroat Chem 18:226–229. doi:10.1002/hc.20266

    Article  CAS  Google Scholar 

  56. Keglevich G, Sipos M, Takács D, Ludányi K (2008) Phospha-Michael reactions involving P-heterocyclic nucleophiles. Heteroat Chem 19:288–292. doi:10.1002/hc.20421

    Article  CAS  Google Scholar 

  57. Keglevich G, Sipos M, Imre T, Ludányi K, Szieberth D, Tőke L (2002) Diastereoselective synthesis of 1,2,3,6-tetrahydrophosphinine 1-oxides with an exocyclic P-function by a Michael type addition. Tetrahedron Lett 43:8515–8518. doi:10.1016/S0040-4039(02)02081-6

    Google Scholar 

  58. Keglevich G, Sipos M, Szieberth D, Nyulászi L, Tm Imre, Ludányi K, Tőke L (2004) Weak intramolecular interactions as controlling factors in the diastereoselective formation of 3-phosphinoxido- and 3-phosphono-1,2,3,6-tetrahydrophosphinine 1-oxides. Tetrahedron 60:6619–6627. doi:10.1016/j.tet.2004.05.090

    Article  CAS  Google Scholar 

  59. Jablonkai E, Drahos L, Drzazga Z, Pietrusiewicz KM, Keglevich G (2012) 3-P(O)< Functionalized phospholane 1-oxides by the Michael reaction of 1-phenyl-2-phospholene 1-oxide and dialkyl phosphites, H-phosphinates or diphenylphosphine oxide. Heteroat Chem 23:539–544. doi:10.1002/hc.21047

    Article  CAS  Google Scholar 

  60. Bálint E, Takács J, Drahos L, Keglevich G (2012) Microwave-assisted phospha-Michael addition of dialkyl phosphites, a phenyl-H-phosphinate, and diphenylphosphine oxide to maleic derivatives. Heteroat Chem 23:235–240. doi:10.1002/hc.21007

    Article  Google Scholar 

  61. Keglevich G, Bálint E, Takács J, Drahos L, Huben K, Jankowski S (2014) The addition of dialkyl phosphites and diphenylphosphine oxide on the triple bond of dimethyl acetylenedicarboxylate under solvent-free and microwave conditions. Curr Org Synth 11:161–166. doi:10.2174/1570179411999140304142747

    Article  CAS  Google Scholar 

  62. Bálint E, Takács J, Bálint M, Keglevich G (2015) The catalyst-free addition of dialkyl phosphites on the triple bond of alkyl phenylpropiolates under microwave conditions. Curr Catal 4:57–64. doi:10.2174/2211544704666150303232225

    Article  Google Scholar 

  63. Keglevich G, Róza Tóth V, Drahos L (2011) Microwave-assisted synthesis of α-hydroxy-benzylphosphonates and -benzylphosphine oxides. Heteroat Chem 22:15–17. doi:10.1002/hc.20649

    Article  CAS  Google Scholar 

  64. Grün A, Molnár IG, Bertók B, Greiner I, Keglevich G (2009) Synthesis of α-hydroxy-methylenebisphos-phonates by the microwave-assisted reaction of α-oxophosphonates and dialkyl phosphites under solventless conditions. Heteroat Chem 20:350–354. doi:10.1002/hc.20558

    Article  Google Scholar 

  65. Keglevich G, Grün A, Molnár IG, Greiner I (2011) Phenyl-, benzyl-, and unsymmetrical hydroxy-methylenebisphosphonates as dronic acid ester analogues from α-oxophosphonates by microwave-assisted syntheses. Heteroat Chem 22:640–648. doi:10.1002/hc.20727

    Article  CAS  Google Scholar 

  66. Kiss NZ, Kaszás A, Drahos L, Mucsi Z, Keglevich G (2012) A neighbouring group effect leading to enhanced nucleophilic substitution of amines at the hindered α-carbon atom of an α-hydroxyphosphonate. Tetrahedron Lett 53:207–209. doi:10.1016/j.tetlet.2011.11.026

    Article  Google Scholar 

  67. Bhattacharya A, Kaur T (2007) An efficient one-pot synthesis of alpha-amino phosphonates catalyzed by bismuth nitrate pentahydrate. Synlett 5:745–748. doi:10.1002/chin.200730153

    Article  Google Scholar 

  68. Matveeva ED, Podrugina TA, Tishkovskaya EV, Tomilova LG, Zefirov NS (2003) A novel catalytic three-component synthesis (Kabachnick-Fields reaction) of alpha-aminophosphonates from ketones. Synlett 2003:2321–2324. doi:10.1055/s-2003-42118

    Article  Google Scholar 

  69. Lee S, Park J, Kang J, Lee J (2001) Lanthanide triflate-catalyzed three component synthesis of alpha-amino phosphonates in ionic liquids. A catalyst reactivity and reusability study. Chem Commun:1698–1699. doi:10.1016/j.tetlet.2005.12.027

    Google Scholar 

  70. Keglevich G, Szekrényi A (2008) Eco-friendly accomplishment of the extended Kabachnik–Fields reaction; a solvent- and catalyst-free microwave-assisted synthesis of α-aminophosphonates and α-aminophosphine oxides. Lett Org Chem 5:616–622. doi:10.2174/157017808786857598

    Article  CAS  Google Scholar 

  71. Kabachnik MM, Zobnina EV, Beletskaya IP (2005) Catalyst-free microwave-assisted synthesis of alpha-aminophosphonates in a three-component system: (RC)-C-1(O)R-2-(EtO)(2)P(O)H-RNH2. Synlett 2005:1393–1396. doi:10.1055/s-2005-868519

    Article  Google Scholar 

  72. Mu X-J, Lei M-Y, Zou J-P, Zhang W (2006) Microwave-assisted solvent-free and catalyst-free Kabachnik-Fields reactions for α-amino phosphonates. Tetrahedron Lett 47:1125–1127. doi:10.1016/j.tetlet.2005.12.027

    Article  CAS  Google Scholar 

  73. Prauda I, Greiner I, Ludányi K, Keglevich G (2007) Efficient synthesis of phosphono- and phosphinoxidomethylated N-heterocycles under solvent-free microwave conditions. Synth Commun 37:317–322. doi:10.1080/00397910601033856

    Article  CAS  Google Scholar 

  74. Keglevich G, Szekrényi A, Sipos M, Ludányi K, Greiner I (2008) Synthesis of cyclic aminomethylphosphonates and aminomethyl-arylphosphinic acids by an efficient microwave-mediated phospha-Mannich approach. Heteroat Chem 19:207–210. doi:10.1002/hc.20387

    Article  CAS  Google Scholar 

  75. Bálint E, Takács J, Drahos L, Juranovič A, Kočevar M, Keglevich G (2013) α-Aminophosphonates and α-aminophosphine oxides by the microwave-assisted Kabachnik-Fields reactions of 3-amino-6-methyl-2H-pyran-2-ones. Heteroat Chem 24:221–225. doi:10.1002/hc.21086

    Article  Google Scholar 

  76. Keglevich G, Bálint E, Kangyal R, Bálint M, Milen M (2014) A critical overview of the Kabachnik-Fields reactions utilizing trialkyl phosphites in water as the reaction medium; a study on the benzaldehyde-benzylamine triethyl phosphite/diethyl phosphite models. Heteroat Chem 25:282–289. doi:10.1002/hc.21192

    Article  CAS  Google Scholar 

  77. Cherkasov RA, Garifzyanov AR, Talan AS, Davletshin RR, Kurnosova NV (2009) Synthesis of new liophilic functionalized aminomethylphosphine oxides and their acid-base and membrane-transport properties toward acidic substrates. Russ J Gen Chem 79:1835–1849. doi:10.1134/S1070363209090114

    Article  CAS  Google Scholar 

  78. Keglevich G, Szekrényi A, Szöllősy Á, Drahos L (2011) Synthesis of bis(phosphonatomethyl)-, bis(phosphinatomethyl)-, and bis(phosphinoxidomethyl)amines, as well as related ring bis(phosphine) platinum complexes. Synth Commun 41:2265–2272. doi:10.1080/00397911.2010.501478

    Article  CAS  Google Scholar 

  79. Bálint E, Fazekas E, Pintér G, Szőllősy A, Holczbauer T, Czugler M, Drahos L, Körtvélyesi T, Keglevich G (2012) Synthesis and utilization of the bis(>P(O)CH2)amine derivatives obtained by the double Kabachnik–Fields reaction with cyclohexylamine; quantum chemical and X-ray study of the related bidentate chelate platinum complexes. Curr Org Chem 16:547–554. doi:10.2174/138527212799499822

    Article  Google Scholar 

  80. Bálint E, Fazekas E, Pongrácz P, Kollár L, Drahos L, Holczbauer T, Czugler M, Keglevich G (2012) N-Benzyl and N-aryl bis(phospha-Mannich adducts): synthesis and catalytic activity of the related bidentate chelate platinum complexes in hydroformylation. J Organomet Chem 717:75–82. doi:10.1016/j.jorganchem.2012.07.031

    Article  Google Scholar 

  81. Bálint E, Fazekas E, Drahos L, Keglevich G (2013) The synthesis of N, N-bis(dialkoxyphosphinoylmethyl)- and N, N-Bis(diphenylphosphinoylmethyl)glycine esters by the microwave-assisted double Kabachnik–Fields reaction. Heteroat Chem 24:510–515. doi:10.1002/hc.21126

    Article  Google Scholar 

  82. Bálint E, Fazekas E, Kóti J, Keglevich G (2015) Synthesis of N, N-bis(dialkoxyphosphinoylmethyl)- and N, N-bis(diphenylphosphinoylmethyl)-β- and γ-amino acid derivatives by the microwave-assisted double Kabachnik–Fields reaction. Heteroat Chem 26:106–115. doi:10.1002/hc.21221

    Article  Google Scholar 

  83. Milen M, Ábrányi-Balogh P, Kangyal R, Dancsó A, Frigyes D, Keglevich G (2014) T3P®-mediated one-pot synthesis of bis(α-aminophosphonates). Heteroat Chem 25:245–255. doi:10.1002/hc.21170

    Article  CAS  Google Scholar 

  84. Keglevich G, Dudás E, Sipos M, Lengyel D, Ludányi K (2006) Efficient synthesis of cyclic β-oxophosphoranes by the microwave-assisted reaction of cyclic phosphine oxides and dialkyl acetylenedicarboxylate. Synthesis 2006:1365–1369. doi:10.1055/s-2006-926395

    Article  Google Scholar 

  85. Keglevich G, Forintos H, Körtvélyesi T (2004) Synthesis and reactions of β-oxophosphoranes/ylides containing a cyclic or acyclic P-moiety. Curr Org Chem 8:1245–1261. doi:10.2174/1385272043370023

    Article  CAS  Google Scholar 

  86. Keglevich G, Szelke H, Kovács J (2004) Fragmentation-related phosphinylation and phosphonylation of nucleophiles utilising the bridging P-unit of 2-phosphabicyclo[2.2.2]oct-5-ene derivatives. Curr Org Synth 1:377–389. doi:10.2174/1570179043366521

    Article  CAS  Google Scholar 

  87. Keglevich G, Dudás E (2007) Microwave promoted efficient synthesis of 2-phosphabicyclo[2.2.2]octadiene- and octene 2-oxides under solvent-free conditions in Diels–Alder reaction. Synth Commun 37:3191–3199. doi:10.1080/00397910701547532

    Article  CAS  Google Scholar 

  88. Hohmann E, Keglevich G, Greiner I (2007) The effect of onium salt additives on the Diels–Alder reactions of a 1-phenyl-1,2-dihydrophosphinine oxide under microwave conditions. Phosphorus, Sulfur Silicon Relat Elem 182:2351. doi:10.1080/10426500701441473

    Article  CAS  Google Scholar 

  89. Keglevich G, Szelke H, Dobó A, Nagy Z, Toke L (2001) Phosphorylation of phenols and naphthols by phenyl-methylenephosphine oxide generated by the thermolysis of a 2-phosphabicyclo[2.2.2]octa-57-diene 2-oxide. Synth Commun 31:1737–1741. doi:10.1081/scc-100104403

    Article  CAS  Google Scholar 

  90. Keglevich G, Kovács R, Drahos L (2011) Diels–Alder cycloadditions of 1,2-dihydrophosphinine oxides and fragmentation-related phosphorylations with 2-phosphabicyclo[2.2.2]octadiene oxides under green chemical conditions—the role of microwave and ionic liquids. Phosphorus, Sulfur Silicon Relat Elem 186:2172–2179. doi:10.1080/10426507.2011.597807

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supports from the Hungarian Research Development and Innovation Fund (K119202) and the Hungarian Scientific Research Fund (PD111895) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Keglevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Keglevich, G., Bálint, E., Kiss, N.Z. (2016). The Use of MW in Organophosphorus Chemistry. In: Keglevich, G. (eds) Milestones in Microwave Chemistry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-30632-2_3

Download citation

Publish with us

Policies and ethics