Skip to main content

Introduction

  • Chapter
  • First Online:
Soft Error Mechanisms, Modeling and Mitigation

Abstract

With advances in CMOS technology, circuits become increasingly more sensitive to transient pulses caused by Single Event particles. This chapter highlights key terrestrial radiation sources for generation of such transients, soft error generation, circuit level modeling of radiation strikes and, soft error rate calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors, 2013 edn., Semiconductor Industry Association (SIA), San Jose, CA, http://www.itrs.net/

  2. S. Mitra, T. Karnik, N. Seifert, M. Zhang, Logic soft errors in sub-65 nm technologies design and CAD challenges, in Proceedings of the DAC (2005), pp. 2–3

    Google Scholar 

  3. P.E. Dodd, L.W. Massengill, Basic mechanisms and modeling of single-event upset in digital microelectronics. IEEE Trans. Nucl. Sci. 50(3), 583–602 (2003)

    Article  Google Scholar 

  4. T. Heijmen, Radiation induced soft errors in digital circuits: a literature survey. Technical Report, Philips Electronics Natl. Lab., Netherlands (2002)

    Google Scholar 

  5. B. Jacob, S.W. Ng, D.T. Wang, Memory Systems: Cache, DRAM, Disk (Morgan Kaufmann Publishers, Burlington, 2007)

    Google Scholar 

  6. R.C. Baumann, Radiation-induced soft errors in advanced semiconductor technologies. IEEE Tran. Dev. Mat. Rel. 5(3), 305–316 (2005)

    Article  MathSciNet  Google Scholar 

  7. D.C. Ness, C.J. Hescott, D.J. Lilja, Improving nanoelectronic designs using a statistical approach to identify key parameters in circuit level SEU simulations, in Proceedings of the 2007 IEEE International Symposium on Nanoscale Architecture, San Jose, CA (2007), pp. 46–53

    Google Scholar 

  8. Q. Zhou, K. Mohanram, Cost-effective radiation hardening technique for combinational logic, in Proceedings of the ICCAD (2004), pp. 100–106

    Google Scholar 

  9. S. DasGupta, A.F. Witulski, B. Bhuva, M. Alles, L.W. Massengill, O.A. Amusan, J.R. Ahlbin, R. Schrimpf, R. Reed (2007) Effect of well and substrate potential modulation on single event pulse shape in deep submicron CMOS. IEEE Trans. Nucl. Sci., 54(6, pt. 1):2407–2412

    Google Scholar 

  10. P.E. Dodd, M.R. Shaneyfelt, J.A. Felix, J.R. Schwank, Production and propagation of single-event transients in high-speed digital logic ICs. IEEE Trans. Nucl. Sci. 51(6), 3278–3284 (2004)

    Article  Google Scholar 

  11. J. Benedetto, P. Eaton, D. Mavis, M. Gadlage, T. Turflinger, Digital single event transient trends with technology node scaling. IEEE Trans. Nucl. Sci. 53(6), 3462–3465 (2006)

    Article  Google Scholar 

  12. R. Garg, S. Khatri, 3D simulation and analysis of the radiation tolerance of voltage scaled digital circuits. Presented at the 2009 IEEE Workshop on Silicon Errors in Logic—System Effects, Stanford, CA (2009)

    Google Scholar 

  13. S. Kauppila, A.L. Sternberg, M.L. Alles, A.M. Francis, J. Holmes, O.A. Amusan, L.W. Massengill, A bias dependent single-event compact model implemented into BSIM4 and a 90 nm CMOS process design kit. IEEE Trans. Nucl. Sci. 56(6), 3152–3157 (2009)

    Article  Google Scholar 

  14. R. Naseer, J. Draper, Y. Boulghassoul, S. DasGupta, A. Witulski, Critical charge and set pulse widths for combinational logic in commercial 90 nm CMOS technology, in Proceedings of the 17th Great Lakes Symposium on VLSI (2007), pp. 227–230

    Google Scholar 

  15. S. Uznanski, G. Gasiot, P. Roche, J.L. Autran, C. Tavernier, Single event upset and multiple cell upset modeling in commercial bulk 65 nm CMOS SRAMs and flip-flops. IEEE Trans. Nucl. Sci. 57(4), 1876–1883 (2010)

    Article  Google Scholar 

  16. B. Jacob, S.W. Ng, D.T. Wang, Memory Systems: Cache, DRAM, Disk, (Morgan Kaufmann Publishers, Burlington 2007)

    Google Scholar 

  17. A. Maheshwari, I. Koren, W. Burleson, Techniques for transient fault sensitivity analysis and reduction in VLSI circuits, in Proceedings of the IEEE International Symposium on Defect and Fault-Tolerance (2003) pp. 597–604

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selahattin Sayil .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sayil, S. (2016). Introduction. In: Soft Error Mechanisms, Modeling and Mitigation . Springer, Cham. https://doi.org/10.1007/978-3-319-30607-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30607-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30606-3

  • Online ISBN: 978-3-319-30607-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics