Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 185))

Abstract

The ability of chevrons at the top edge of a backward-facing step to reduce downstream surface pressure fluctuations is investigated numerically. Three different chevron configurations are compared against a baseline case without chevrons. Low frequency reduction in the surface pressure fluctuations is observed for two of the configurations. The chevrons do not appear to have a significant effect on the flow as the mean reattachment length for all configurations is nearly constant and there is only a small increase in streamwise turbulence for one configuration with the other configurations unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.L. Aider, A. Danet, M. Lesieur, Large-eddy simulation applied to study the influence of upstream conditions on the time-dependant and averaged characteristics of a backward-facing step flow. J. Turbul. 8(N51) (2007). doi:10.1080/14685240701701000

    Google Scholar 

  2. M.B. Alkislar, A. Krothapalli, G.W. Butler, The effect of streamwise vortices on the aeroacoustics of a mach 0.9 jet. J. Fluid Mech. 578, 139–169 (2007). doi:10.1017/S0022112007005022

    Article  MATH  Google Scholar 

  3. J. Bridges, C.A. Brown, Parametric testing of chevrons on single flow hot jets, in 10th AIAA/CEAS Aeroacoustics Conference (2004). doi:10.2514/6.2004-2824. AIAA-2004-2824

  4. J. Dandois, E. Garnier, P. Sagaut, Numerical simulation of active separation control by a synthetic jet. J. Fluid Mech. 574, 25–58 (2007). doi:10.1017/S0022112006003995

    Article  MATH  Google Scholar 

  5. E. de Villiers, The potential of large eddy simulation for the modeling of wall bounded flows. Ph.D. thesis, Imperial College of Science, Technology and Medicine, London (2006)

    Google Scholar 

  6. M. Gruber, M. Azarpeyvand, P.F. Joseph, Airfoil trailing edge noise reduction by the introduction of sawtooth and slitted trailing edge geometries, in Proceedings 20th International Congress on Acoustics, ICA 2010 (2010)

    Google Scholar 

  7. M.A.Z. Hasan, The flow over a backward-facing step under controlled perturbation: laminar separation. J. Fluid Mech. 238, 73–96 (1992). doi:10.1017/S0022112092001642

    Article  Google Scholar 

  8. T.S. Lund, X. Wu, K.D. Squires, Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140(2), 233–258 (1998). doi:10.1006/jcph.1998.5882

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Mihǎescu, C. Harris, E. Gutmark, Flow and acoustics characteristics of chevron nozzles in coaxial jets—LES & acoustic analogy investigation, in 13th AIAA/CEAS Aeroacoustics Conference (2007). doi:10.2514/6.2007-3609. AIAA-2007-3609

  10. D.J. Moreau, L. Brooks, C.J. Doolan, On the noise reduction mechanism of a flat plate serrated trailing edge at low-to-moderate reynolds number, in 18th AIAA/CEAS Aeroacoustics Conference (2012). doi:10.2514/6.2012-2186. AIAA-2012-2186

  11. J. Nilsson, R.Z. Szász, P.E. Austrell, E.J. Gutmark, Load and response prediction using numerical methods in acoustic fatigue. J. Aircraft 53(2), 406–415 (2016). doi:10.2514/1.C033414

    Google Scholar 

  12. S. Oerlemans, M. Fisher, T. Maeder, K. Kögler, Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA J. 47(6), 1470–1481 (2009). doi:10.2514/1.38888

    Article  Google Scholar 

  13. OpenFOAM Foundation: OpenFOAM, the open source CFD toolbox user guide, version 2.1.1 (2012)

    Google Scholar 

  14. R. Sandberg, L. Jones, Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations. J. Sound Vib. 330(16), 3818–3831 (2011). doi:10.1016/j.jsv.2011.02.005

    Article  Google Scholar 

  15. D. Spalding, A single formula for the “law of the wall”. J. Appl. Mech. 28(3), 455–458 (1961). doi:10.1115/1.3641728

    Article  MATH  Google Scholar 

  16. D. Violato, F. Scarano, Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys. Fluids 23(12), 124104 (2011). doi:10.1063/1.3665141

    Google Scholar 

Download references

Acknowledgments

Joachim Hodara at Georgia Institute of Technology is gratefully acknowledged for sharing his implementation of the Lund inlet BC. This work was supported by the Swedish Governmental Agency for Innovation Systems (VINNOVA) and SAAB AB under the National Aviation Research Programme (NFFP5). The simulations were performed on resources provided by the Swedish National Infrastructure for Computing (SNIC) at Lunarc and HPC2N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nilsson, J., Szász, RZ., Austrell, PE., Gutmark, E.J. (2016). Passive Load Control in Backward-Facing Step Flow by Using Chevrons. In: Segalini, A. (eds) Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015). Springer Proceedings in Physics, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-30602-5_28

Download citation

Publish with us

Policies and ethics