Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 185))

Abstract

In this study, the effect of chordwise flexibility has been investigated experimentally for a plunging foil. A Digital Particle Image Velocimetry (DPIV) system is used to determine instantaneous velocity and vorticity fields around and in the near-wake of the wings in conjunction with simultaneous direct force/moment measurements. The aerodynamic/hydrodynamic performance is studied for rigid and flexible wings undergoing plunge motion at different amplitudes and frequencies in a freestream of Re = 10 000. The thrust coefficient (\(C_T\)), the power input coefficient (\(C_P\)) and the efficiency (\(\eta \)) values are also obtained and linked with the flexibility, trailing edge motion and flow structures in the near-wake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Heathcote, I. Gursul, Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45(5), 1066–1079 (2007)

    Article  Google Scholar 

  2. L. Zhao, Q. Huang, X. Deng, S.P. Sane, Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7(44), 485–497 (2010)

    Article  Google Scholar 

  3. H. Hu, A.G. Kumar, G. Abate, R. Albertani, An experimental investigation on the aerodynamic performances of flexible membrane wings in flapping flight. Aerosp. Sci. Technol. 14(8), 575–586 (2010)

    Article  Google Scholar 

  4. N.S. Ha, Q.T. Truong, N.S. Goo, H.C. Park, Relationship between wingbeat frequency and resonant frequency of the wing in insects. Bioinspiration and Biomimetics 8(4), 046008 (2013)

    Article  Google Scholar 

  5. D.B. Quinn, G.V. Lauder, A.J. Smits, Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250–267 (2014)

    Article  Google Scholar 

  6. J.D. Eldredge, J. Toomey, A. Medina, On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. J. Fluid Mech. 659, 94–115 (2010)

    Article  MATH  Google Scholar 

  7. D. Qi, G. He, Y. Liu, Lattice Boltzmann simulations of a pitch-up and pitch-down maneuver of a chord-wise flexible wing in a free stream flow. Phys. Fluids 26(2), 021902 (2014)

    Article  Google Scholar 

  8. S. Michelin, S.G.L. Smith, Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids (1994-present), 21(7), 071902 (2009)

    Google Scholar 

  9. D. Qi, R. Gordnier, Effects of deformation on lift and power efficiency in a hovering motion of a chord-wise flexible wing. J. Fluid Struct. 54, 142–170 (2015)

    Article  Google Scholar 

  10. R. Knoller, Die Gesetze des Luftwiderstandes. Flug- und Motortechnik (Wien) 3, 1–7 (1909)

    Google Scholar 

  11. A. Betz, Ein Beitrag zur Erklaerung des Segelfluges. Zeitschrift fuer Flugtechnik und Motorluftschiffahrt 3, 269–272 (1912)

    Google Scholar 

  12. R. Katzmayr, Effect of periodic changes of angle of attack on behaviour of airfoils. NACA 147 (1922)

    Google Scholar 

  13. I. Gursul, D.J. Cleaver, Z. Wang, Control of low Reynolds number flows by means of fluid structure interactions. Prog. Aerosp. Sci. 64, 17–55 (2014)

    Article  Google Scholar 

  14. J.M. Anderson, K. Streitlien, D.S. Barrett, M.S. Triantafyllou, Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.S. Triantafyllou, G.S. Triantafyllou, R. Gopalkrishnan, Wake mechanics for thrust generation in oscillating foils. Phys. Fluids A-Fluid (1989-1993), 3(12), 2835–2837 (1991)

    Google Scholar 

  16. P. Prempraneerach, F.S. Hover, M.S. Triantafyllou, The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proceedings 13th International Symposium on Unmanned Untethered Submersible Technology: special session on bioengineering research related to autonomous underwater vehicles, New Hampshire (2003)

    Google Scholar 

  17. B. Monnier, A.M. Naguib, M.M. Koochesfahani, Influence of structural flexibility on the wake vortex pattern of airfoils undergoing harmonic pitch oscillation. Exp. Fluids 56(4), 1–17 (2015)

    Article  Google Scholar 

  18. S. Ramananarivo, R. Godoy-Diana, B. Thiria, Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proc. Natl. Acad. Sci. 108(15), 5964–5969 (2011)

    Article  Google Scholar 

  19. W. Shyy, H. Aono, C.K. Kang, H. Liu, An introduction to flapping wing aerodynamics, vol. 37. Cambridge University Press (2013)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding provided by the Scientific and Technological Research Council of Turkey (TUBITAK) Grant 112M682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Son .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Son, O., Cetiner, O. (2016). Effect of Chordwise Flexibility on Flapping Wing Aerodynamics. In: Segalini, A. (eds) Proceedings of the 5th International Conference on Jets, Wakes and Separated Flows (ICJWSF2015). Springer Proceedings in Physics, vol 185. Springer, Cham. https://doi.org/10.1007/978-3-319-30602-5_26

Download citation

Publish with us

Policies and ethics