Skip to main content

Mice Post-natal Subventricular Zone Neurospheres: Derivation, Culture, Differentiation and Applications

  • Chapter
  • First Online:
Working with Stem Cells

Abstract

Neurogenesis is a highly regulated process, by which the brain is able to produce new neural cells mainly under normal conditions or after injury. Neurogenesis is restricted to specific areas in the brain, known as niches, where neural stem cells (NSCs) are generated. Two main regions have been described as neurogenic in mammalian brain, the subventricular zone (SVZ) in the anterolateral ventricles, and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. Under appropriate microenviromental circumstances, NSCs divide and give rise to neural progenitor cells (NPCs) that will generate mature neurons or glia. These precursors can be obtained from rodent animal models to produce neurospheres as an in vitro model for neurogenesis. Neurospheres are aggregates of NPC that grow in suspension and are capable of differentiating into every lineage of neural cells, including neurons and glia. This capacity shows the high potential of neurospheres as an in vitro model to study neurogenesis and alternatives methodologies to investigate neurodegenerative disorders. Here, we present an easy and highly reproducible protocol for working with SVZ neurospheres from post-natal mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed S (2009) The culture of neural stem cells. J Cell Biochem 106:1–6

    Article  CAS  PubMed  Google Scholar 

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla A, Garcia-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629–634

    CAS  PubMed  Google Scholar 

  • Azari H, Rahman M, Sharififar S, Reynolds BA (2010) Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp 20:2393

    Google Scholar 

  • Azari H, Louis SA, Sharififar S, Vedam-Mai V, Reynolds BA (2011a) Neural-colony forming cell assay: an assay to discriminate bona fide neural stem cells from neural progenitor cells. J Vis Exp 6:2639

    Google Scholar 

  • Azari H, Sharififar S, Rahman M, Ansari S, Reynolds BA (2011b) Establishing embryonic mouse neural stem cell culture using the neurosphere assay. J Vis Exp 11:2457

    Google Scholar 

  • Basak O, Taylor V (2009) Stem cells of the adult mammalian brain and their niche. Cell Mol Life Sci 66:1057–1072

    Article  CAS  PubMed  Google Scholar 

  • Bennett LB, Cai J, Enikolopov G, Iacovitti L (2010) Heterotopically transplanted CVO neural stem cells generate neurons and migrate with SVZ cells in the adult mouse brain. Neurosci Lett 475:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaguidi MA, Song J, Ming GI, Song H (2012) A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazel CY, Nuñez JL, Yang Z, Levison SW (2005) Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience 131:55–65

    Article  CAS  PubMed  Google Scholar 

  • Coles-Takabe BL, Brain I, Purpura KA, Karpowicz P, Zandstra PW, Morshead CM, Van der Kooy D (2008) Don't look: growing clonal versus nonclonal neural stem cell colonies. Stem Cells 26:2938–2944

    Article  PubMed  Google Scholar 

  • Colucci-D’Amato L, Bonavita V, di Porzio U (2006) The end of the central dogma of neurobiology: stem cells and neurogenesis in adult CNS. Neurol Sci 27:266–270

    Article  PubMed  Google Scholar 

  • Dirks PB (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond B Biol Sci 363:139–152

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  CAS  PubMed  Google Scholar 

  • Fuentealba LC, Obernier K, Alvarez-Buylla A (2012) Adult neural stem cells bridge their niche. Cell Stem Cell 10:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bennett AE, König N, Abrahamsson N, Kozhevnikova M, Zhou C, Trolle C, Pankratova S, Berezin V, Kozlova EN (2014) In vitro generation of motor neuron precursors from mouse embryonic stem cells using mesoporous nanoparticles. Nanomedicine (Lond) 9:2457–2466

    Article  CAS  Google Scholar 

  • Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ (1999) Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci 2:260–265

    Article  CAS  PubMed  Google Scholar 

  • Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1:67–73

    Article  CAS  PubMed  Google Scholar 

  • Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R (2008) Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Jensen JB, Parmar M (2006) Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34:153–161

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MS (2001) Environment complexity stimulates visual cortex neurogenesis: death of a dogma and a research career. Trends Neurosci 24:617–620

    Article  CAS  PubMed  Google Scholar 

  • Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  CAS  PubMed  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DA, Alvarez-Buylla A (2014) Adult neural stem cells stake their ground. Trends Neurosci 37:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkle FT, Mirzadeh Z, Alvarez-Buylla A (2007) Mosaic organization of neural stem cells in the adult brain. Science 317:381–384

    Article  CAS  PubMed  Google Scholar 

  • Mignone JL, Kukekov V, Chiang AS, Steindler D, Enikolopov G (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J Comp Neurol 469:311–324

    Article  CAS  PubMed  Google Scholar 

  • Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzadeh Z, Merkle FT, Soriano-Navarro M, Garcia-Verdugo JM, Alvarez-Buylla A (2008) Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3:265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morizane A, Takahashi J, Shinoyama M, Ideguchi M, Takagi Y, Fukuda H, Koyanagi M, Sasai Y, Hashimoto N (2006) Generation of graftable dopaminergic neuron progenitors from mouse ES cells by a combination of coculture and neurosphere methods. J Neurosci Res 83:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Nottebohm F (2002) Why are some neurons replaced in adult brain? J Neurosci 22:624–628

    CAS  PubMed  Google Scholar 

  • Reynolds BA, Rietze RL (2005) Neural stem cells and neurospheres—re-evaluating the relationship. Nat Methods 2:333–336

    Article  CAS  PubMed  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  CAS  PubMed  Google Scholar 

  • Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosc 21:7153–7160

    CAS  Google Scholar 

  • Wu CY, Whye D, Mason RW, Wang W (2012) Efficient differentiation of mouse embryonic stem cells into motor neurons. J Vis Exp 64:e3813

    PubMed  Google Scholar 

Download references

Acknowledgements

HU acknowledges grant support by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP Project No. 2012/50880-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq Project No. 486294/2012-9 and 467465/2014-2), Brazil. LSA’s doctoral thesis research is supported by a fellowship from FAPESP (Project No. 2013/25338-4). CS is recipient of a CAPES-FAPERJ Postdoc fellowship. SX postdoctoral research is supported by a fellowship from FCT-Portugal (SFRH/BPD/ 76642/2011). We would like to acknowledge Ana Moreira and Rui Rodrigues for their kind help with photos and images for Fig. 5.2 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Ulrich .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sardá-Arroyo, L., Schitine, C., Xapelli, S.A., Ulrich, H. (2016). Mice Post-natal Subventricular Zone Neurospheres: Derivation, Culture, Differentiation and Applications. In: Working with Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-30582-0_5

Download citation

Publish with us

Policies and ethics