Skip to main content

Neural Differentiation of Rodent Neural Progenitor Cells and Isolation and Enrichment of Human Neural Progenitor/Stem Cells

  • Chapter
  • First Online:
Working with Stem Cells

Abstract

Neural progenitor cells (NPC) are multipotent and give rise to neurons, astrocytes and oligodendrocytes. NPC possess the ability of in vivo and in vitro proliferation and can therefore be expanded for research proposes. Cell proliferation generates a three dimensional aggregate called neurospheres; posteriorly, these neurospheres can be differentiated into multiple cell types and become an important tool for understanding the mechanisms regarding cell differentiation and neuronal regeneration. In this chapter, we describe the extraction of rat neural progenitor cells from embryonic telencephalon (14 days) and generation of neurospheres. Next, we describe protocols to isolate and proliferate human fetal stem cells derived from elective abortion, recognizing the ethical dilemmas. The advantage of using the neurospheres-rat model is that the differentiation can be achieved by removing the growth factors and allowing cell differentiation in poly-d-lysine/laminin coated plates. The cells can then be dissociated and grafted in animals or be differentiated and grafted, depending on the research hypothesis. The endogenous cells can be followed by staining with lipophilic dyes or analyzed by adding 5-Bromo-2′-deoxyuridine (BrdU) using the posterior double immunofluorescence technique, which identifies the post-mitotic neural progenitor cells and the fate acquired. The methods here described will help the researcher to perform cell extraction, differentiation without cell enrichment, track the proliferating neural progenitor cells and perform characterization after the cell graft, as well as isolate and maintain human fetal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anacker C, Zunszain PA, Cattaneo A, Carvalho LA, Garabedian MJ, Thuret S, Pariante CM (2011) Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 16:738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, Manley NC, Pereira MP, Sheikh LA, McMillan EL (2011) Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain 134:1777–1789

    Article  PubMed  PubMed Central  Google Scholar 

  • Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N (2005) Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25:9752–9761

    Article  CAS  PubMed  Google Scholar 

  • Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  CAS  PubMed  Google Scholar 

  • Barkho BZ, Zhao X (2011) Adult neural stem cells: response to stroke injury and potential for therapeutic applications. Curr Stem Cell Res Ther 6:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone FC, Feuerstein GZ, Spera RP (1997) Calcium channel blockers in cerebral ischaemia. Expert Opin Investig Drugs 6:501–519

    Article  CAS  PubMed  Google Scholar 

  • Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A, Von Der Behens W, Kempermann G (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 24:603–613

    Article  CAS  PubMed  Google Scholar 

  • Braun H, Schäfer K, Höllt V (2002) Beta III tubulin-expressing neurons reveal enhanced neurogenesis in hippocampal and cortical structures after a contusion trauma in rats. J Neurotrauma 19:975–983

    Article  PubMed  Google Scholar 

  • Dhara SK, Hasneen K, Machacek DW, Boyd NL, Rao RR, Stice SL (2008) Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 76:454–464

    Article  CAS  PubMed  Google Scholar 

  • Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trend Neurosci 22:391–397

    Article  CAS  PubMed  Google Scholar 

  • Eckenhoff MF, Rakic P (1988) Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci 8:2729–2747

    CAS  PubMed  Google Scholar 

  • Einstein O, Ben-Hur T (2008) The changing face of neural stem cell therapy in neurologic diseases. Arch Neurol 65:452–456

    Article  PubMed  Google Scholar 

  • Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S, McMahon A, Rao M, Pevny L (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165

    Article  CAS  PubMed  Google Scholar 

  • Endo M, Doi R, Nishita M, Minami Y (2012) Ror family receptor tyrosine kinases regulate the maintenance of neural progenitor cells in the developing neocortex. J Cell Sci 125:2017–2029

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Gingras M, Champigny MF, Berthod F (2007) Differentiation of human adult skin-derived neuronal precursors into mature neurons. J Cell Physiol 210:498–506

    Article  CAS  PubMed  Google Scholar 

  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765

    Article  CAS  PubMed  Google Scholar 

  • Hall PE, Lathia JD, Miller NG, Caldwell MA, Ffrench-Constant C (2006) Integrins are markers of human neural stem cells. Stem Cells 24:2078–2084

    Article  CAS  PubMed  Google Scholar 

  • Hansen DV, Lui JH, Parker PRL, Kriegstein AR (2010) Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464:554–561

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245

    Article  PubMed  Google Scholar 

  • Iadecola C, Alexander M (2001) Cerebral ischemia and inflammation. Curr Opin Neurol 14:89–94

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Satou T, Ishida H, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009) The relationship between SDF-1alpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res 31:90–102

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Habiba A, Doherty JM, Mills JC, Mercer RW, Huettner JE (2009) Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev Biol 328:456–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirik OV, Vlasov TD, Korzhevskii DE (2013) Neural stem cell markers nestin and musashi-1 in rat telencephalon cells after transient focal ischemia. Neurosci Behav Physiol 43:587–591

    Article  CAS  Google Scholar 

  • Liu Y, Namba T, Liu J, Suzuki R, Shioda S, Seki T (2010) Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus. Neurosci.166:241–251

    Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog—regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  CAS  PubMed  Google Scholar 

  • Marmur R, Mabie PC, Gokhan S, Song Q, Kessler JA, Mehler MF (1998) Isolation and developmental characterization of cerebral cortical multipotent progenitors. Dev Biol 204:577–591

    Article  CAS  PubMed  Google Scholar 

  • Martins AH, Alves JM, Trujillo CA, Schwindt TT, Barnabe GF, Motta FLT, Guimaraes AO, Casarini DE, Mello LE, Pesquero JB, Ulrich H (2008) Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry 73:361–368

    Article  PubMed  Google Scholar 

  • Martins AH, Hu J, Xu Z, Mu C, Alvarez P, Ford BD, El Sayed K, Eterovic VA, Ferchmin PA, Hao J (2015) Neuroprotective activity of (1S,2E,4R,6R,-7E,11E)-2,7,11-cembratriene-4,6-diol (4R) in vitro and in vivo in rodent models of brain ischemia. Neuroscience 291:250–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matigian N, Abrahamsen G, Sutharsan R, Cook AL, Vitale AM, Nouwens A, Bellette B, An J, Anderson M, Beckhouse AG, Bennebroek M, Cecil R, Chalk AM, Cochane J, Fan Y, Feron F, McCurdy R, McGrawth JJ, Murrell W, Perry C, Raju J, Ravishankar S, Silburn PA, Sutherland GT, Mahler S, Mellick GD, Wood SA, Sue CM, Wells CA, Mackay-Sim A (2010) Disease-specific, neurosphere-derived cells as models for brain disorders. Dis Model Mech 3:785–798

    Article  CAS  PubMed  Google Scholar 

  • McCullumsmith RE, Hammond JH, Shan D, Meador-Woodruff JH (2014) Postmortem brain: an underutilized substrate for studying severe mental illness. Neuropsychopharmacology 39:65–87

    Article  PubMed  Google Scholar 

  • Messam CA, Hou J, Major EO (2000) Coexpression of nestin in neural and glial cells in the developing human CNS defined by a human-specific anti-nestin antibody. Exp Neurol 161:585–596

    Article  CAS  PubMed  Google Scholar 

  • Miralles VJ, Martı́nez-López I, Zaragozá R, Borrás E, Garcı́a C, Pallardó FV, Viña JR (2001) Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress. Brain Res 922:21–29

    Article  CAS  PubMed  Google Scholar 

  • Mitome M, Low HP, van den Pol A, Nunnari JJ, Wolf MK, Billings-Gagliardi S, Schwartz WJ (2001) Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain 124:2147–2161

    Article  CAS  PubMed  Google Scholar 

  • Nagato M, Heike T, Kato T, Yamanaka Y, Yoshimoto M, Shimazaki T, Okano H, Nakahata T (2005) Prospective characterization of neural stem cells by flow cytometry analysis using a combination of surface markers. J Neurosci Res 80:456–466

    Article  CAS  PubMed  Google Scholar 

  • Nait-Oumesmar B, Picard-Riera N, Kerninon C, Decker L, Seilhean D, Hoglinger GU, Hirsch EC, Reynolds R, Baron-Van Evercooren A (2007) Activation of the subventricular zone in multiple sclerosis: evidence for early glial progenitors. Proc Natl Acad Sci U S A 104:4694–4699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman T, Keen A, Zuber MX, Kristjansson GI, Gruss P, Nornes HO (1993) Neuronal expression of regulatory helix-loop-helix factor Id2 gene in mouse. Dev Biol 160:186–195

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi A, Sawa H, Tsuda M, Sawamura Y, Itoh T, Iwasaki Y, Nagashima K (2003) Expression of the oligodendroglial lineage-associated markers Olig1 and Olig2 in different types of human gliomas. J Neuropathol Exp Neurol 62:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS (2010) Nestin is required for the proper self-renewal of neural stem cells. Stem Cells 28:2162–2171

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Bronson RT, Frankel WN, Hong M, Israel MA, Yun K (2013) Elevated Id2 expression results in precocious neural stem cell depletion and abnormal brain development. Stem Cells 31:1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfenninger CV, Roschupkina T, Hertwig F, Kottwitz D, Englund E, Bengzon J, Jacobsen SE, Nuber UA (2007) CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res 67:5727–5736

    Article  CAS  PubMed  Google Scholar 

  • Raponi E, Agenes F, Delphin C, Assard N, Baudier J, Legraverend C, Deloulme JC (2007) S100B expression defines a state in which GFAP-expressing cells lose their neural stem cell potential and acquire a more mature developmental stage. Glia 55:165–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Martinez G, Molina-Hernandez A, Velasco I (2012) Activin A promotes neuronal differentiation of cerebrocortical neural progenitor cells. PloS One 7:e43797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki T (2002) Expression patterns of immature neuronal markers PSA-NCAM, CRMP-4 and NeuroD in the hippocampus of young adult and aged rodents. J Neurosci Res 70:327–334

    Article  CAS  PubMed  Google Scholar 

  • Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4:440–452

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Kong W, Falk A, Hu J, Zhou L, Pollard S, Smith A (2009) CD133 (Prominin) negative human neural stem cells are clonogenic and tripotent. PloS One 4:e5498

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Namiki J, Shibata S, Mastuzaki Y, Okano H (2010) The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem 58:721–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terkelsen OB, Stagaard Janas M, Bock E, Møllgård K (1992) NCAM as a differentiation marker of postmigratory immature neurons in the developing human nervous system. Int J Dev Neurosci 10:505–516

    Article  CAS  PubMed  Google Scholar 

  • Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66:303–313

    CAS  PubMed  Google Scholar 

  • Trujillo CA, Schwindt TT, Martins AH, Alves JM, Mello LE, Ulrich H (2009) Novel perspectives of neural stem cell differentiation: from neurotransmitters to therapeutics. Cytometry A 75:38–53

    Article  PubMed  Google Scholar 

  • Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci 97:14720–14726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venere M, Han YG, Bell R, Song JS, Alvarez-Buylla A, Blelloch R (2012) Sox1 marks an activated neural stem/progenitor cell in the hippocampus. Development 139:3938–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156:71–83

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Jiang J, Ford G, Ford BD (2004) Neuregulin-1 is neuroprotective and attenuates inflammatory responses induced by ischemic stroke. Biochem Biophys Res Commun 322:440–446

    Article  CAS  PubMed  Google Scholar 

  • Young MJ, Ray J, Whiteley SJO, Klassen H, Gage FH (2000) Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol Cell Neurosci 16:197–205

    Article  CAS  PubMed  Google Scholar 

  • Yun SW, Leong C, Zhai D, Tan YL, Lim L, Bi X, Lee JJ, Kim HJ, Kang NY, Ng SH, Stanton LW, Chang YT (2012) Neural stem cell specific fluorescent chemical probe binding to FABP7. Proc Natl Acad Sci 109:10214–10217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang RL, Zhang ZG, Zhang L, Chopp M (2001) Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33–41

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH (U54NS083924) for AHM and MNG. JLRL received support from the NIGMS (8P20GM103475-12) and MBRS-RISE at UNE (2R25GM066250-05A1) from NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio H. Martins .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martins, A.H., Roig-Lopez, J.L., Gonzalez, M.N. (2016). Neural Differentiation of Rodent Neural Progenitor Cells and Isolation and Enrichment of Human Neural Progenitor/Stem Cells. In: Working with Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-30582-0_4

Download citation

Publish with us

Policies and ethics