Skip to main content

Tumor Treating Fields Therapy for Newly Diagnosed Glioblastoma

  • Chapter
  • First Online:
Alternating Electric Fields Therapy in Oncology

Abstract

A fundamental characteristic of glioblastomas is heterogeneity at the cellular and molecular levels between tumors as well as between individual cells within the tumor microenvironment. These inter-tumoral and intra-tumoral heterogeneities are what make glioblastomas so difficult to treat in patients. As the tumor progresses over time, it accumulates more alterations and co-opts normal physiological processes for growth and proliferation as well as evasion from the immune system. Tumor Treating Fields (TTFields), as delivered by the Optune device, interferes with the co-opted cell division machinery and potentiates anti-tumor immune response. The pre-specified interim analysis of the EF-14 randomized trial using the device in newly diagnosed glioblastoma patients was positive, and it has shown prolongation of both progression free survival and overall survival in patients received TTFields together with maintenance temozolomide when compared to those treated with temozolomide alone. The median progression free survival was 7.1 (95 % CI 5.9–8.2) months in the TTFields plus temozolomide cohort and 4.0 (95 % CI 3.3–5.2) months in the temozolomide alone cohort (hazard ratio = 0.62 [95 % CI 0.43–0.89], p = 0.001). The overall survival of the intent-to-treat population showed a median overall survival of 19.6 (95 % CI 16.6–24.4) months in the TTFields plus temozolomide group versus 16.6 (95 % CI 13.6–19.2) months in the temozolomide alone group (hazard ratio = 0.74, [95 % CI 0.56–0.98], p = 0.03). The combined treatment was well-tolerated and without unexpected side effects. Although results from additional outcome analyses will likely be reported in the future, the positive data from the interim analysis suggest that TTFields offer benefit to newly diagnosed patients with glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brennan CW, Verhaak RGW, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Verhaak RGW, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell. 2011;20:810–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A. 2013;110:4009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science. 2014;343:189–93.

    Article  CAS  PubMed  Google Scholar 

  6. Wong ET. Tumor growth, invasion, and angiogenesis in malignant gliomas. J Neurooncol. 2006;77:295–6.

    Article  PubMed  Google Scholar 

  7. Romero FJ, Ortega A, Titus F, Ibarra B, Navarro C, Rovira M. Gliomatosis cerebri with formation of a glioblastoma multiforme. Study and follow-up by magnetic resonance and computed tomography. J Comput Tomogr. 1988;12:253–7.

    Article  CAS  PubMed  Google Scholar 

  8. Showalter TN, Andrel J, Andrews DW, Curran Jr WJ, Daskalakis C, Werner-Wasik M. Multifocal glioblastoma multiforme: prognostic factors and patterns of progression. Int J Radiat Oncol Biol Phys. 2007;69:820–4.

    Article  PubMed  Google Scholar 

  9. Lun M, Lok E, Gautam S, Wu E, Wong ET. The natural history of extracranial metastasis from glioblastoma multiforme. J Neurooncol. 2011;105:261–73.

    Article  PubMed  Google Scholar 

  10. Müller C, Holtschmidt J, Auer M, Heitzer E, Lamszus E, Schulte A, et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med. 2014;6:247ra101.

    Article  PubMed  Google Scholar 

  11. Chang SM, Wen P, Cloughesy T, Greenberg H, Schiff D, Conrad C, et al. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs. 2005;23:357–61.

    Article  CAS  PubMed  Google Scholar 

  12. Lee EQ, Kaley TJ, Duda DG, Schiff D, Lassman AB, Wong ET, et al. A multicenter, phase II, randomized, noncomparative clinical trial of radiation and temozolomide with or without vandetanib in newly diagnosed glioblastoma patients. Clin Cancer Res. 2015;21:3610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  14. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370:699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishkawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.

    Article  CAS  PubMed  Google Scholar 

  16. Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2006;13:84–8.

    Article  PubMed  Google Scholar 

  17. Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19:3165–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong ET, Lok E, Gautam S, Swanson KD. Dexamethasone exerts profound immunologic interference on treatment efficacy for recurrent glioblastoma. Br J Cancer. 2015;113:232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hughes MA, Parisi M, Grossman SA, Kleinberg L. Primary brain tumors treated with steroids and radiotherapy: low CD4 counts and risk of infection. Int J Radiat Oncol Biol Phys. 2005;62:1423–6.

    Article  CAS  PubMed  Google Scholar 

  20. Pitter KL, Tamagno I, Alikhanyan K, Hosni-Ahmed A, Pattwell SS, Donnola S, et al. Corticosteroids compromise survival in glioblastoma. Brain. 2016;139:1458–71.

    Google Scholar 

  21. Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, et al. Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res. 2011;17:5473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Back MF, Ang EL, Ng WH, See SJ, Lim CC, Chan SP, et al. Improved median survival for glioblastoma multiforme following introduction of adjuvant temozolomide chemotherapy. Ann Acad Med Singapore. 2007;36:338–42.

    PubMed  Google Scholar 

  23. Takano S, Kimu H, Tsuda K, Osuka S, Nakai K, Yamamoto T, et al. Decrease in the apparent diffusion coefficient in peritumoral edema for the assessment of recurrent glioblastoma treated by bevacizumab. Acta Neurochir Suppl. 2013;118:185–9.

    PubMed  Google Scholar 

  24. Chu K, Jeong SW, Jung KH, Han SY, Lee ST, Kim M, et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J Cereb Blood Flow Metab. 2004;24:926–33.

    Article  CAS  PubMed  Google Scholar 

  25. Lee SH, Park HK, Ryu WS, Lee JS, Bae HJ, Han MK, et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicenter randomized controlled trial. Eur J Neurol. 2013;20:1161–9.

    Article  PubMed  Google Scholar 

  26. Carpentier AF, Ferrari D, Bailon O, Ursu R, Banissi C, Dubessy AL, et al. Steroid-sparing effects of angiotensin-II inhibitors in glioblastoma patients. Eur J Neurol. 2012;19:1337–42.

    Article  CAS  PubMed  Google Scholar 

  27. Kirson ED, Gurvich Z, Schneiderman R, Dekel E, Itzhaki A, Wasserman Y, et al. Disruption of cancer cell replication by alternating electric fields. Cancer Res. 2004;64:3288–95.

    Article  CAS  PubMed  Google Scholar 

  28. Gera N, Yang A, Holtzman TS, Lee SX, Wong ET, Swanson KD. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit. PLoS One. 2015;10:e0125269.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee SX, Wong E, Swanson K. Disruption of cell division within anaphase by tumor treating electric fields (TTFields) leads to immunogenic cell death. Neuro-Oncology. 2013;15 Suppl 3:iii66–7.

    Google Scholar 

  30. Stupp R, Wong ET, Kanner AA, Steinberg D, Engelhard H, Heidecke V, et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomized phase III trial of a novel treatment modality. Eur J Cancer. 2012;48:2192–202.

    Article  PubMed  Google Scholar 

  31. Rulseh AM, Keller J, Klener J, Sroubek J, Dbalý V, Syrucek M, et al. Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields. World J Surg Oncol. 2012;10:220.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kirson ED, Schneiderman RS, Dbalý V, Tovaryš F, Vymazal J, Itzhaki A, et al. Chemotherapeutic treatment efficacy and sensitivity are increased by adjuvant alternating electric fields (TTFields). BMC Med Phys. 2009;9:1.

    Article  PubMed  PubMed Central  Google Scholar 

  33. https://clinicaltrials.gov/ct2/show/NCT00916409.

  34. Macdonald DR, Casino TL, Schold Jr SC, Cairncross JG. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8:1277–80.

    CAS  PubMed  Google Scholar 

  35. Stupp R, Taillibert S, Kanner AA, Kesari S, Steinberg DM, Toms SA, et al. Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma. A randomized clinical trial. JAMA. 2015;314:2535–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eric T. Wong M.D. or Zvi Ram M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wong, E.T., Ram, Z. (2016). Tumor Treating Fields Therapy for Newly Diagnosed Glioblastoma. In: Wong, E. (eds) Alternating Electric Fields Therapy in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-30576-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30576-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30574-5

  • Online ISBN: 978-3-319-30576-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics