Skip to main content

Lipid Regulation of Acrosome Exocytosis

  • Chapter
  • First Online:
Sperm Acrosome Biogenesis and Function During Fertilization

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 220))

Abstract

Lipids are critical regulators of mammalian sperm function, first helping prevent premature acrosome exocytosis, then enabling sperm to become competent to fertilize at the right place/time through the process of capacitation, and ultimately triggering acrosome exocytosis. Yet because they do not fit neatly into the “DNA–RNA–protein” synthetic pathway, they are understudied and poorly understood. Here, we focus on three lipids or lipid classes—cholesterol, phospholipids, and the ganglioside GM1—in context of the modern paradigm of acrosome exocytosis. We describe how these various species are precisely segregated into membrane macrodomains and microdomains, simultaneously preventing premature exocytosis while acting as foci for organizing regulatory and effector molecules that will enable exocytosis. Although the mechanisms responsible for these domains are poorly defined, there is substantial evidence for their composition and functions. We present diverse ways that lipids and lipid modifications regulate capacitation and acrosome exocytosis, describing in more detail how removal of cholesterol plays a master regulatory role in enabling exocytosis through at least two complementary pathways. First, cholesterol efflux leads to proteolytic activation of phospholipase B, which cleaves both phospholipid tails. The resultant changes in membrane curvature provide a mechanism for the point fusions now known to occur far before a sperm physically interacts with the zona pellucida. Cholesterol efflux also enables GM1 to regulate the voltage-dependent cation channel, CaV2.3, triggering focal calcium transients required for acrosome exocytosis in response to subsequent whole-cell calcium rises. We close with a model integrating functions for lipids in regulating acrosome exocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi Nahed R, Martinez G, Escoffier J et al (2015) Progesterone-induced acrosome exocytosis requires sequential involvement of calcium-independent iPLA2[beta] and group X sPLA2. J Biol Chem. doi:10.1074/jbc.M115.677799

    PubMed  Google Scholar 

  • Asano A, Selvaraj V, Buttke DE, Nelson JL, Green KM, Evans JE, Travis AJ (2009) Biochemical characterization of membrane fractions in murine sperm: identification of three distinct sub-types of membrane rafts. J Cell Physiol 218:537–548. doi:10.1002/jcp.21623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano A, Nelson JL, Zhang S, Travis AJ (2010) Characterization of the proteomes associating with three distinct membrane raft sub-types in murine sperm. Proteomics 10:3494–3505. doi:10.1002/pmic.201000002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano A, Nelson-Harrington JL, Travis AJ (2013a) Membrane rafts regulate phospholipase B activation in murine sperm. Commun Integr Biol 6, e27362. doi:10.4161/cib.27362

    Article  PubMed  PubMed Central  Google Scholar 

  • Asano A, Nelson-Harrington JL, Travis AJ (2013b) Phospholipase B is activated in response to sterol removal and stimulates acrosome exocytosis in murine sperm. J Biol Chem 288:28104–28115. doi:10.1074/jbc.M113.450981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bou Khalil M, Chakrabandhu K, Xu H et al (2006) Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol 290:220–235

    Article  PubMed  Google Scholar 

  • Buttke DE, Nelson JL, Schlegel PN, Hunnicutt GR, Travis AJ (2006) Visualization of GM1 with cholera toxin B in live epididymal versus ejaculated bull, mouse, and human spermatozoa. Biol Reprod 74:889–895

    Article  CAS  PubMed  Google Scholar 

  • Chavez JC, Ferreira JJ, Butler A et al (2014) SLO3 K+ channels control calcium entry through CATSPER channels in sperm. J Biol Chem 289:32266–32275. doi:10.1074/jbc.M114.607556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen R, Buttke DE, Asano A et al (2014) Lipid modulation of calcium flux through CaV2.3 regulates acrosome exocytosis and fertilization. Dev Cell 28:310–321. doi:10.1016/j.devcel.2014.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor WE, Lin DS, Wolf DP, Alexander M (1998) Uneven distribution of desmosterol and docosahexaenoic acid in the heads and tails of monkey sperm. J Lipid Res 39:1404–1411

    CAS  PubMed  Google Scholar 

  • Cross NL (1996) Effect of cholesterol and other sterols on human sperm acrosomal responsiveness. Mol Reprod Dev 45:212–217

    Article  CAS  PubMed  Google Scholar 

  • Davis BK (1981) Timing of fertilization in mammals: sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval. Proc Natl Acad Sci U S A 78:7560–7564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Blas GA, Roggero CM, Tomes CN, Mayorga LS (2005) Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 3, e323

    Article  PubMed  PubMed Central  Google Scholar 

  • de Vries KJ, Wiedmer T, Sims PJ, Gadella BM (2003) Caspase-independent exposure of aminophospholipids and tyrosine phosphorylation in bicarbonate responsive human sperm cells. Biol Reprod 68:2122–2134

    Article  PubMed  Google Scholar 

  • Delagebeaudeuf C, Gassama-Diagne A, Nauze M et al (1998) Ectopic epididymal expression of guinea pig intestinal phospholipase B. Possible role in sperm maturation and activation by limited proteolytic digestion. J Biol Chem 273:13407–13414

    Article  CAS  PubMed  Google Scholar 

  • Ehrenwald E, Foote RH, Parks JE (1990) Bovine oviductal fluid components and their potential role in sperm cholesterol efflux. Mol Reprod Dev 25:195–204

    Article  CAS  PubMed  Google Scholar 

  • Feigenson GW (2009) Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures. Biochim Biophys Acta 1788:47–52. doi:10.1016/j.bbamem.2008.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flesch FM, Brouwers JF, Nievelstein PF, Verkleij AJ, van Golde LM, Colenbrander B, Gadella BM (2001) Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane. J Cell Sci 114:3543–3555

    CAS  PubMed  Google Scholar 

  • Friend DS (1982) Plasma-membrane diversity in a highly polarized cell. J Cell Biol 93:243–249

    Article  CAS  PubMed  Google Scholar 

  • Fukami K, Nakao K, Inoue T et al (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292:920–923

    Article  CAS  PubMed  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5:777–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadella BM, Harrison RA (2000) The capacitating agent bicarbonate induces protein kinase A-dependent changes in phospholipid transbilayer behavior in the sperm plasma membrane. Development 127:2407–2420

    CAS  PubMed  Google Scholar 

  • Galantino-Homer HL, Zeng WX, Megee SO, Dallmeyer M, Voelkl D, Dobrinski I (2006) Effects of 2-hydroxypropyl-beta-cyclodextrin and cholesterol on porcine sperm viability and capacitation status following cold shock or incubation. Mol Reprod Dev 73:638–650

    Article  CAS  PubMed  Google Scholar 

  • Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Go KJ, Wolf DP (1985) Albumin-mediated changes in sperm sterol content during capacitation. Biol Reprod 32:145–153

    Article  CAS  PubMed  Google Scholar 

  • Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P, Suarez SS (2006) Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biol Reprod 75:501–507. doi:10.1095/biolreprod.106.053306

    Article  CAS  PubMed  Google Scholar 

  • Herrick SB, Schweissinger DL, Kim SW, Bayan KR, Mann S, Cardullo RA (2005) The acrosomal vesicle of mouse sperm is a calcium store. J Cell Physiol 202:663–671. doi:10.1002/jcp.20172

    Article  CAS  PubMed  Google Scholar 

  • Jin M, Fujiwara E, Kakiuchi Y et al (2011) Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proc Natl Acad Sci U S A 108:4892–4896. doi:10.1073/pnas.1018202108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3:499–502

    Article  CAS  PubMed  Google Scholar 

  • Kawano N, Yoshida M (2007) Semen-coagulating protein, SVS2, in mouse seminal plasma controls sperm fertility. Biol Reprod 76:353–361

    Article  CAS  PubMed  Google Scholar 

  • Kawano N, Yoshida K, Iwamoto T, Yoshida M (2008) Ganglioside GM1 mediates decapacitation effects of SVS2 on murine spermatozoa. Biol Reprod 79:1153–1159. doi:10.1095/biolreprod.108.069054

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Gerton GL (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 264:141–152

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Foster JA, Kvasnicka KW, Gerton GL (2011) Transitional states of acrosomal exocytosis and proteolytic processing of the acrosomal matrix in guinea pig sperm. Mol Reprod Dev doi. doi:10.1002/mrd.21387

    Google Scholar 

  • Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem 277:25859–25862

    Article  CAS  PubMed  Google Scholar 

  • Langlais J, Zollinger M, Plante L, Chapdelaine A, Bleau G, Roberts KD (1981) Localization of cholesteryl sulfate in human spermatozoa in support of a hypothesis for the mechanism of capacitation. Proc Natl Acad Sci U S A 78:7266–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leahy T, Gadella BM (2015) New insights into the regulation of cholesterol efflux from the sperm membrane. Asian J Androl 17:561–567. doi:10.4103/1008-682X.153309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin DS, Connor WE, Wolf DP, Neuringer M, Hachey DL (1993) Unique lipids of primate spermatozoa: desmosterol and docosahexaenoic acid. J Lipid Res 34:491–499

    PubMed  Google Scholar 

  • Lishko PV, Kirichok Y (2010) The role of Hv1 and CatSper channels in sperm activation. J Physiol 588:4667–4672. doi:10.1113/jphysiol.2010.194142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lishko PV, Botchkina IL, Fedorenko A, Kirichok Y (2010) Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel. Cell 140:327–337. doi:10.1016/j.cell.2009.12.053

    Article  CAS  PubMed  Google Scholar 

  • Manjunath P, Therien I (2002) Role of seminal plasma phospholipid-binding proteins in sperm membrane lipid modification that occurs during capacitation. J Reprod Immunol 53:109–119

    Article  CAS  PubMed  Google Scholar 

  • Pelletier RM, Friend DS (1983) Development of membrane differentiations in the guinea pig spermatid during spermiogenesis. Am J Anat 167:119–141

    Article  CAS  PubMed  Google Scholar 

  • Rathi R, Colenbrander B, Bevers MM, Gadella BM (2001) Evaluation of in vitro capacitation of stallion spermatozoa. Biol Reprod 65:462–470

    Article  CAS  PubMed  Google Scholar 

  • Rice A, Parrington J, Jones KT, Swann K (2000) Mammalian sperm contain a Ca(2+)-sensitive phospholipase C activity that can generate InsP(3) from PIP(2) associated with intracellular organelles. Dev Biol 228:125–135

    Article  CAS  PubMed  Google Scholar 

  • Roberts KD (1987) Sterol sulfates in the epididymis; synthesis and possible function in the reproductive process. J Steroid Biochem 27:337–341

    Article  CAS  PubMed  Google Scholar 

  • Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046. doi:10.1016/j.febslet.2010.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj V, Asano A, Buttke DE et al (2006) Segregation of micron-scale membrane sub-domains in live murine sperm. J Cell Physiol 206:636–646

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj V, Buttke DE, Asano A et al (2007) GM1 dynamics as a marker for membrane changes associated with the process of capacitation in murine and bovine spermatozoa. J Androl 28:588–599

    Article  CAS  PubMed  Google Scholar 

  • Selvaraj V, Asano A, Buttke DE, Sengupta P, Weiss RS, Travis AJ (2009) Mechanisms underlying the micron-scale segregation of sterols and G(M1) in live mammalian sperm. J Cell Physiol 218:522–536. doi:10.1002/jcp.21624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siafakas AR, Wright LC, Sorrell TC, Djordjevic JT (2006) Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot Cell 5:488–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699. doi:10.1038/nrm2977

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3:a004697. doi:10.1101/cshperspect.a004697

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamboulian S, Moutin MJ, Treves S et al (2005) Junctate, an inositol 1,4,5-triphosphate receptor associated protein, is present in rodent sperm and binds TRPC2 and TRPC5 but not TRPC1 channels. Dev Biol 286:326–337

    Article  CAS  PubMed  Google Scholar 

  • Strott CA, Higashi Y (2003) Cholesterol sulfate in human physiology: what’s it all about? J Lipid Res 44:1268–1278. doi:10.1194/jlr.R300005-JLR200

    Article  CAS  PubMed  Google Scholar 

  • Sullivan R, Frenette G, Girouard J (2007) Epididymosomes are involved in the acquisition of new sperm proteins during epididymal transit. Asian J Androl 9:483–491. doi:10.1111/j.1745-7262.2007.00281.x

    Article  CAS  PubMed  Google Scholar 

  • Sutton KA, Jungnickel MK, Wang Y, Cullen K, Lambert S, Florman HM (2004) Enkurin is a novel calmodulin and TRPC channel binding protein in sperm. Dev Biol 274:426–435. doi:10.1016/j.ydbio.2004.07.031

    Article  CAS  PubMed  Google Scholar 

  • Takemori H, Zolotaryov FN, Ting L et al (1998) Identification of functional domains of rat intestinal phospholipase B/lipase. Its cDNA cloning, expression, and tissue distribution. J Biol Chem 273:2222–2231

    Article  CAS  PubMed  Google Scholar 

  • Tang QY, Zhang Z, Xia J, Ren D, Logothetis DE (2010) Phosphatidylinositol 4,5-bisphosphate activates Slo3 currents and its hydrolysis underlies the epidermal growth factor-induced current inhibition. J Biol Chem 285:19259–19266. doi:10.1074/jbc.M109.100156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tojo H, Ichida T, Okamoto M (1998) Purification and characterization of a catalytic domain of rat intestinal phospholipase B/lipase associated with brush border membranes. J Biol Chem 273:2214–2221

    Article  CAS  PubMed  Google Scholar 

  • Travis AJ, Kopf GS (2002) The role of cholesterol efflux in regulating the fertilization potential of mammalian spermatozoa. J Clin Invest 110:731–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travis AJ, Merdiushev T, Vargas LA et al (2001) Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev Biol 240:599–610

    Article  CAS  PubMed  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124. doi:10.1038/nrm2330

    Article  PubMed  PubMed Central  Google Scholar 

  • Visconti PE, Moore GD, Bailey JL et al (1995) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150

    CAS  PubMed  Google Scholar 

  • Visconti PE, Galantino-Homer H, Ning X et al (1999a) Cholesterol efflux-mediated signal transduction in mammalian sperm. β-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274:3235–3242

    Article  CAS  PubMed  Google Scholar 

  • Visconti PE, Ning X, Fornes MW, Alvarez JG, Stein P, Connors SA, Kopf GS (1999b) Cholesterol efflux-mediated signal transduction in mammalian sperm: cholesterol release signals an increase in protein tyrosine phosphorylation during mouse sperm capacitation. Dev Biol 214:429–443

    Article  CAS  PubMed  Google Scholar 

  • Walensky LD, Snyder SH (1995) Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosome of mammalian sperm. J Cell Biol 130:857–869

    Article  CAS  PubMed  Google Scholar 

  • Wang D, King SM, Quill TA, Doolittle LK, Garbers DL (2003) A new sperm-specific Na+/H+ exchanger required for sperm motility and fertility. Nat Cell Biol 5:1117–1122. doi:10.1038/ncb1072

    Article  CAS  PubMed  Google Scholar 

  • Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217. doi:10.1074/jbc.M002068200[pii]

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Cornell’s Baker Institute for Animal Health, the College of Veterinary Medicine, and Atkinson Center for a Sustainable Future. A.J.T. is a founder and an officer of Androvia LifeSciences, LLC, a biotechnology company investigating solutions for male infertility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander J. Travis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cohen, R., Mukai, C., Travis, A.J. (2016). Lipid Regulation of Acrosome Exocytosis. In: Buffone, M. (eds) Sperm Acrosome Biogenesis and Function During Fertilization. Advances in Anatomy, Embryology and Cell Biology, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-30567-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30567-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30565-3

  • Online ISBN: 978-3-319-30567-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics