Skip to main content

Energy, Water, Climate and Cycles

  • Chapter
  • First Online:
Energy, Complexity and Wealth Maximization

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 1645 Accesses

Abstract

The sun, which continuously energizes our solar system, radiates about 4 × 1014 terawatts (TW) of power, in all directions. Since a terawatt is a thousand Gigawatts (GW) and a million Megawatts (MW), that is an extremely large amount of power. The unit of power, terawatt (TW), is convenient because it is about the right size for discussions of energy use in the global economy. The Earth intercepts only a tiny fraction of that enormous solar output, viz. 174,260 TW, or 340.2 ± 0.1 W per square meter of the Earth’s silhouette or intercept surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The results shown in Fig. 6.2 are significantly different from earlier and more widely published results compiled by Trenberth et al. (2007), especially with respect to evaporation and rainfall. The new results, based on more sophisticated sensors, are more trustworthy.

  2. 2.

    It has been suggested that a deliberate policy of increasing the iron supply to the plankton could help to “manage” the atmospheric level of draw down the CO2.

  3. 3.

    El Niño (the Christ child) was originally the name given to a warm coastal current that appeared off the coast of Peru around Christmas time, each year. Now, however, it refers to the abnormal conditions.

  4. 4.

    I am grateful to David Wasdell for pointing out this relationship, even though I think he relies too much on it.

  5. 5.

    I was unable to find the original reference, which was not cited by Wasdell.

  6. 6.

    The physics is actually quite complicated, and there are still significant uncertainties; research in this area is now very active. See IPCC (1995, p. 201 et seq).

  7. 7.

    Another important source, that will be much harder to control, is agriculture, especially grass-eating animals—cattle, sheep and goats—that rely on bacteria in their second stomachs to digest cellulose. These bacteria generate methane as a waste product in the process.

  8. 8.

    For instance, the oxidation reaction N2 + O2 → 2NO is highly endothermic. It does not occur spontaneously at normal temperatures and pressures (otherwise the atmosphere could not contain both molecular oxygen and molecular nitrogen). Once NO is formed, however, further oxidation reactions do occur spontaneously— albeit slowly—until the most oxidized form of nitrogen (N2O5) is reached. Dissolved in water, this is nitric acid (HNO3). In thermodynamic equilibrium, oxygen and nitrogen would be combined in this form.

  9. 9.

    In the more general case, the rate of photosynthesis can be expected to depend on the concentrations of all the essential nutrients—especially C, N, S, P—in biologically available form.

  10. 10.

    The origin of natural gas is currently in doubt. For a long time it was assumed that natural gas was entirely biogenic and associated mainly with petroleum. Now it is known that gas deposits are much more widely distributed than petroleum deposits. It has been suggested by several astronomers that much of the hydrogen in the Earth’s crust may have originated from the sun (via the “solar wind” proton bombardment).

  11. 11.

    To be more precise, an environment lacking nitrates, manganese oxide, iron oxides or sulfates. Recall the earlier discussion of “redox potential” and bacterial sources of oxygen for metabolism.

  12. 12.

    Opal is a form of silica used for the shells of diatoms.

  13. 13.

    If the oceans were to freeze the weathering rate would fall to zero, allowing the atmospheric CO2 level to rise due to volcanic action. It has been shown that this feedback is sufficient to assure that the oceans would not have been frozen over, even during the Earth’s early history when the sun was emitting 30 % less energy than it does today (Walker et al. 1981).

  14. 14.

    Most bacteria and animals can only utilize organic nitrogen, mainly as amino acids.

  15. 15.

    Denitrification bacteria reduce nitrates (NO3) to obtain oxygen for metabolic purposes. They do not metabolize ammonia. Thus the denitrification flux from fertilizers depends somewhat on the chemical form in which it is applied. The N2O/N2 proportion depends on local factors, such as carbon content of the soil, acidity and dissolved oxygen. It must be acknowledged that the combined uncertainties are quite large. Thus, for instance, a recent US study sets the N2O emissions from fertilizer at 1.5 Tg/year, as compared to only 1 Tg/year from fossil fuel combustion. Other estimates in the literature range from 0.01 to 2.2 Tg/year (Watson et al. 1992).

  16. 16.

    The reaction is 4NH3 + 3O2 = 2 N2 + 6H2O.

  17. 17.

    To be sure, CO2 was present in the early atmosphere and carbonic acid (H2CO3) is CO2 dissolved in water. But CO2 is not very soluble, and the oceans are essentially a saturated solution. Moreover, carbonic acid is a very weak acid as compared to sulfuric and nitric acids.

References

  • Ad hoc Study Group on Carbon Dioxide and Climate. 1979. In Carbon dioxide and climate: A scientific assessment, ed. Jule (Chair) Charney. Washington, DC: National Academy of Sciences (NAS).

    Google Scholar 

  • Ahrendts, Joachim. 1980. Reference States. Energy 5(5): 667–677.

    Google Scholar 

  • Allan, Richard P., C. Liu, N.G. Loeb, M.D. Palmer, M. Roberts, D. Smith, and P.-D. Vidale. 2014. Changes in global net radiation imbalance. Geophysical Research Letters 41: 5588–5597.

    Article  ADS  Google Scholar 

  • Arrhenius, Svante. 1896. On the influence of carbonic acid in the air on the temperature on the ground. Philosophical Transactions of the Royal Society 41: 237–276.

    Google Scholar 

  • Azar, Christian. Makten over Klimatet (Swedish) Solving the climate challenge. Translated by Paulina Essunger, 2012 ed. Stockholm: Albert Bonniers Publishing Co., 2008, 2012.

    Google Scholar 

  • Berner, R.A. 1990. unknown. Geochimica et Cosmochimica Acta 54: 2889–2890.

    Article  ADS  Google Scholar 

  • Berner, R.A., A.C. Lasaga, and R.M. Garrels. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. American Journal of Science 283: 641–683.

    Article  Google Scholar 

  • Blackwelder, E. 1916. The geological role of phosphorus. American Journal of Sciences 62: 285–298.

    Google Scholar 

  • Bryson, Reid. 1974. A perspective on climate change. Science 184: 753–760.

    Article  ADS  Google Scholar 

  • Budyko, Mikhail I. 1956. The energy balance of the Earth's surface (in Russian).

    Google Scholar 

  • ———. 1969. The effect of solar radiation variations on the climate of the earth. Tellus 21: 611–619.

    Article  ADS  Google Scholar 

  • ———. 1974. Climate and life. New York: Academic Press.

    Google Scholar 

  • ———. 1977. Climate change. Washington, DC: American Geophysical Union.

    Google Scholar 

  • ———. 1988. Global climate catastrophes. New York: Springer-Verlag.

    Book  Google Scholar 

  • CDAC, Carbon Dioxide Assessment Committee. 1983. Changing Climate: Report of the Carbon Dioxide Assessment Committee of the National Academy of Sciences. Washington, DC: National Academy Press.

    Google Scholar 

  • Chambers, D.P., J. Wahr, and R.S. Nerem. 2004. Preliminary observations of global ocean mass variations with GRACE. Geophysical Research Letters 31: Li3310.

    Google Scholar 

  • Church, J.A., and N.J. White. 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics 32: 585–602.

    Article  ADS  Google Scholar 

  • Council for Agricultural Science and Technology; 1976. Effect of increased nitrogen fixation on stratospheric ozone. Ames, IO: Council for Agricultural Science and Technology.

    Google Scholar 

  • Crutzen, Paul J. 1970. The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society 96: 320–325.

    Article  ADS  Google Scholar 

  • ———. 1974. Estimates of possible variations in total ozone due to natural causes and human activities. Ambio 3: 201–210.

    Google Scholar 

  • den Elzen, Michel G.J., Arthur Bensen, and Jan Rotmans. 1995. Modeling global biogeochemical cycles: An integrated modeling approach. Bilthoven, The Netherlands: Global Dynamics and Sustainable Development Programme, National Institute of Public Health and Environment (RIVM).

    Google Scholar 

  • Durack, Paul J., Susan E. Wijffels, and Richard J. Matear. 2012. Ocean water salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336: 455–458.

    Article  ADS  Google Scholar 

  • Frank, Louis A., J.B. Sigwarth, and C.M. Yeates. 1990. A search for small solar-system bodies near the earth using a ground-based telescope: Technique and observations. Astronomy and Astrophysics 228: 522.

    ADS  Google Scholar 

  • Galbally, I.E. 1985. The emission of nitrogen to the remote atmosphere: Background paper. In The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere, ed. J.N. Galloway et al. Dordrecht, The Netherlands: D. Reidel Publishing Company.

    Google Scholar 

  • Galloway, James N., William H. Schlesinger, H. Levy, A. Michaels, and J.L. Schnoor. 1995. Nitrogen fixation: Anthropogenic enhancement-environmental response. Global Biogeochemical Cycles 9(2): 235–252.

    Article  ADS  Google Scholar 

  • Gates, David M. 1993. Climate Change and its biological consequences. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Gerlach, T.M. 1991. unknown. Eos 72: 249–255.

    ADS  Google Scholar 

  • Hansen, James, A. Lacis, D. Rind, G. Russell, P. Stone, J. Fung, R. Ruedy, and J. Lerner. 1984. Climate sensitivity analysis of feedback mechanisms. In Geophysical Monograph 29, ed. Maurice Ewing. New York: American Geophysical Union.

    Google Scholar 

  • Hansen, James, G. Russell, A. Lacis, I. Fung, D. Rind, and P. Stone. 1985. Climate response times: Dependence on climate sensitivity and ocean mixing. Science 229: 582–589.

    Article  Google Scholar 

  • Hansen, James, M. Sato, P. Kharecha, D. Beerling, R. Berner, and V. Masson-Delmotte. 2008. Target atmospheric CO2: Where should humanity aim? Open Atmospheric Science Journal 2: 217–231.

    Article  ADS  Google Scholar 

  • Hansen, James, M. Sato, G. Russell, and P. Kharecha. 2013. Climate sensitivity, sea level and atmospheric carbon dioxide. Philosophical Transactions of the Royal Society A 371: 20210294.

    Article  Google Scholar 

  • Hays, J.D., J. Imbrie, and N.J. Shackleton. 1976. Variations in the earth’s orbit: “Pacemaker of the ice ages”. Science 194(4270): 1121–1132.

    Article  ADS  Google Scholar 

  • Holland, H.D. 1978. The chemical evolution of the atmosphere and the oceans. New York: John Wiley.

    Google Scholar 

  • Houghton, J.T., B.A. Callander, and S.K. Varney. 1992. Climate change 1992: The supplementary report to the IPCC scientific assessment. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hoyle, Fred. 1981. Ice, the ultimate human catastrophe. New York: Continuum.

    Google Scholar 

  • IPCC. 1995. The science of climate change: Contribution of working group I. In 2nd Assessment Report of the Intergovernmental Panel On Climate Change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • ———. 2007. IPCC Fourth Assessment Report: Climate Change 2007 (AR4). 4 vols. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • ———. 2013. Constraints on long-term climate change and the equilibrium climate sensitivity. Geneva.

    Google Scholar 

  • ———. 2014. IPCC Fifth Assessment Report: Climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jacob, Daniel. 2002. Atmospheric Chemistry. Princeton: Princeton University Press.

    Google Scholar 

  • Kasting, James F., and James C. G. Walker. (in press). The geophysical carbon cycle and the uptake of fossil fuel CO2. In Global and Planetary Change.

    Google Scholar 

  • Kauppi, P., K. Mielikainen, and K. Kuusula. 1992. Biomass and carbon budget of European forests; 1971 to 1990. Science 256: 311–314.

    Article  Google Scholar 

  • Kennett, James P., Kevin G. Cannariato, Ingrid L. Hendy, and Richard J. Behl. 2003. Methane hydrates in quaternary climate change: The clathrate gun hypothesis. Washington, DC: American Geophysical Union.

    Book  Google Scholar 

  • Krauss, Ulish H., Henning G. Saam, and Helmut W. Schmidt. 1984. Phosphate. In International Strategic Minerals Inventory: Summary Reports 930 series. Washington, DC: USGS.

    Google Scholar 

  • Lenton, Timothy M., and Andrew Watson. 2011. Revolutions that made the Earth. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Lenton, Timothy M., Hermann Held, Elmar Kriegler, James W. Hall, Wolfgang Lucht, Stefan Rahmstorf, and Hans Joachim Schellnhuber. 2008. Tipping elements in the Earth’s climate system. Proceedings of the National Academy of Sciences 105(6): 1786–1793.

    Article  ADS  MATH  Google Scholar 

  • Lewis, G.N., and M. Randall. 1923. Thermodynamics. New York: McGraw-Hill.

    Google Scholar 

  • Lindzen, Richard S., and Ming-Dah Chou. 2001. Does the Earth have an adaptive IR “iris”? Bulletin of the American Meteorological Society 82(3): 417–432.

    Article  ADS  Google Scholar 

  • Lindzen, Richard S., and Yong-Sang Choi. 2011. On the observational determination of climate sensitivity and its implications. Asia-Pacific Journal of Atmospheric Science 47(4): 377–390.

    Article  ADS  Google Scholar 

  • Liu, S.C., and R.J. Cicerone. 1984. Fixed nitrogen cycle, Global Tropospheric Chemistry, 113–116. Washington, DC: National Academy Press.

    Google Scholar 

  • Lotka, Alfred J. 1925. Elements of mathematical biology. 2nd Reprint ed. Baltimore: Williams and Wilkins. Original edition, 1924.

    Google Scholar 

  • Loulergue, L., F. Parrenin, T. Bluniert, J-M Barnola, R. Spahni, A. Schilt, G. Raisbeck, and J. Chappellaz. 2007. New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr. Climate of the Past 3: 527–540. doi:10.5194/cp-3-527-2007.

  • Lovelock, James E. 1979. Gaia: A new look at life on earth. London: Oxford University Press.

    Google Scholar 

  • ———. 1988. The ages of Gaia: A biography of our living earth. London: Oxford University Press.

    Google Scholar 

  • Lunt, Daniel J., Alan M. Haywood, Gavin A. Schmidt, Ulrich Salzmann, Paul J. Valdes, and Harry J. Dowsett. 2010. Earth system sensitivity inferred from Pliocene modeling and data. Nature Geoscience 3: 60–64.

    Article  ADS  Google Scholar 

  • Mann, Michael E., Stefan Rahmstorf, Byron A. Steinman, Martin Tingley, and Sonya K. Miller. 2016. The likelihood of recent record warmth. Scientific Reports 6: 19831. doi:10.1038/srep19831. http://www.nature.com/articles/srep19831#supplementary-information.

    Article  ADS  Google Scholar 

  • Martinez-Boti, M.A., Gavin L. Foster, T.B. Chalk, E.J. Rohling, P.F. Sexton, Daniel J. Lunt, R.D. Pancost, M.P.S. Badger, and D.N. Schmidt. 2015. Plio-Pleistocene climate sensitivity evaluation using high resolution CO2 records. Nature 5: 2.

    Google Scholar 

  • McElroy, M.B., and S.F. Wofsy. 1986. Tropical forests: Interactions with the atmosphere. In Tropical Forests and World Atmosphere, ed. G.F. Prance. Washington, DC: AAAS.

    Google Scholar 

  • Milankovitch, Milutin. 1941 [1998]. Canon of insolation and the Ice Age problem. 1998 English translation ed. Belgrade: Zavod za Udz. Original edition, 1941.

    Google Scholar 

  • Miller, L.M., F. Gans, and A. Kleidon. 2011. Jet stream wind power as a renewable resource. Earth Systems Dynamics 2: 201–212.

    Article  ADS  Google Scholar 

  • Muller, Richard A., and Gordon J.F. MacDonald. 1997. Glacial cycles and astronomical forcing. Science 277(5323): 215–218.

    Article  ADS  Google Scholar 

  • Nicolis, Gregoire, and Ilya Prigogine. 1977. Self-organization in non-equilibrium systems. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Pasek, Matthew A. 2008. Rethinking the early Earth phosphorus geochemistry. Proceedings of the National Academy of Sciences (PNAS) 105(3): 853–858.

    Article  ADS  Google Scholar 

  • Peltier, W.R. 2004. Global glacial isostasy and the surface of the ice-age Earth: The ice-5G model and GRACE. Annual Review of Earth and Planetary Sciences 32: 111–149.

    Article  ADS  Google Scholar 

  • Peng, T.-H., W.S. Broecker, H.-D. Freyer, and S. Trumbore. 1983. A deconvolution of the tree-ring based BC record. Journal of Geophysical Research 88: 3609–3620.

    Article  ADS  Google Scholar 

  • Petit, J.R., J. Jouzel, D. Raynaud, N.I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V.M. Kotlyakov, M. Legrand, M.Y. Lipenkov, C. Lorius, L. PÉpin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436. doi:10.1038/20859.

    Article  ADS  Google Scholar 

  • Previdi, M., B.G. Liepert, D. Peteet, Hansen James, D.J. Beeerling, A.J. Broccoli, S. Frolking, J.N. Galloway, M. Heimann, C. Le Qu’er’e, S. Levitus, and V. Ramaswamy. 2013. Climate sensitivity in the Anthropocene. Quarterly Journal of the Royal Meteorological Society 139: 1121–1131.

    Article  ADS  Google Scholar 

  • Raymo, R.E., and W.F. Ruddiman. 1992. Tectonic forcing of late Cenozoic climate. Nature 359(6391): 117–122.

    Article  ADS  Google Scholar 

  • Revelle, Roger, and Hans Suess. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus IX: 1–27.

    Google Scholar 

  • Rockström, Johan, Will Steffen, Kevin Noone, Asa Perrsson, F. Stuart Chapin III, Eric F. Lambin, Timothy M. Lenton, Marten Scheffer, Carl Folke, Hans Joachim Schnellhuber, Björn Nykvist, Cynthia A. de Wit, Terry Hughes, Sander van der Leeuw, Henning Rodhe, Sverker Sörlin, Peter K. Snyder, Robert Costanza, Uno Svedin, Malin Falkenmark, Louise Karlberg, Robert W. Corell, Victoria J. Fabry, James Hansen, Brian Walker, Diane Liverman, Katherine Richardson, Paul Crutzen, and Jonathan A. Foley. 2009. A safe operating space for humanity. Nature 461: 472–475.

    Google Scholar 

  • Rudnick, R. L., and S. Gao 2004. Composition of the continental crust. In The Crust: Treatise on Geochemistry, 1–64. Dordrecht, Netherlands: Elsevier Pergamon.

    Google Scholar 

  • Schimel, D., I. Enting, M. Heimann, T.M.L. Wigley, D. Raynaud, D. Alves, and U. Siegenthaler. 1994. The carbon cycle. Cambridge, UK: Radiative Forcing of Climate.

    Google Scholar 

  • Schlesinger, William H. 1991. Biogeochemistry: An analysis of global change. New York: Academic Press.

    Google Scholar 

  • Sedjo, R.A. 1992. Temperate forest ecosystems in the global carbon cycle. Ambio 21: 274–277.

    Google Scholar 

  • Shakhova, N., I. Semiletov, A. Salyuk, D. Kosmach, and N. Bel’cheva. 2007. Methane release from the Arctic East Siberian shelf. Geophysical Research Abstracts 9.

    Google Scholar 

  • Shakhova, N., I. Semiletov, A. Salyuk, and D. Kosmach. 2008. Anomalies of methane in the atmosphere over the East Siberian shelf: Is here any sign of methane leakage from shallow shelf hydrates? Geophysical Research Abstracts 10.

    Google Scholar 

  • Shakhova, N., I. Semiletov, I. Leifer, A. Salyuk, P. Rekant, and D. Kosmach. 2010a. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. Journal of Geophysical Research 115: C08007. doi:10.1029/2009JC005602.

    Article  ADS  Google Scholar 

  • Shakhova, N., I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson. 2010b. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 327(5970): 1246–1250.

    Article  ADS  Google Scholar 

  • Shiklomanov, Igor. 1993. World fresh water resources. In Water in Crisis: A Guide to the World's Fresh Water Resources, ed. Peter H. Gleick. New York: Oxford University Press.

    Google Scholar 

  • Sillèn, L.G. 1967. The ocean as a chemical system. Science 156: 1189–1197.

    Article  ADS  Google Scholar 

  • Skarke, A., C. Ruppel, M. Kodis, D. Brothers, and E. Lobecker. 2014. Widespread leakage from the sea floor of the East Siberian ocean and along the northern US Atlantic margin. Nature Geoscience 7: 657–661.

    Article  ADS  Google Scholar 

  • Smil, Vaclav. 1997. Cycles of life: Civilization and the biosphere. New York: Scientific American Library.

    Google Scholar 

  • ———. 2000. Transforming the world: Synthesis of ammonia and its consequences. Cambridge, MA: MIT Press.

    Google Scholar 

  • ———. 2001. Cycles of life: Civilisation and the biosphere. Cambridge, MA: MIT Press.

    Google Scholar 

  • ———. 2003. Energy at the crossroads: Global perspectives and uncertainties. Cambridge, MA: MIT Press.

    Google Scholar 

  • ———. 2004. Enriching the Earth: Fritz Haber, Carl Bosch and the transformation of world food production. Cambridge, MA: MIT Press.

    Google Scholar 

  • ———. 2008. Energy in nature and society: General energetics of complex systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Stephens, Graeme, Juilin Li, Martin Wild, Carol Anne Clayson, Norman Loeb, Seiji Kato, Tristan L’Ecuyer, Paul W. Stackhouse Jr., Matthew Lebsock, and Timothy Andrews. 2012. An update on Earth’s energy balance in light of latest global observations. Nature Geoscience 5: 691–696.

    Article  ADS  Google Scholar 

  • Sundquist, Eric T. 1993. The global carbon dioxide budget. Science 259: 934–941.

    Article  ADS  Google Scholar 

  • Tans, P.P., I.Y. Fung, and T. Takahashi. 1990. The global atmospheric CO2 budget. Science 247: 1431–1438.

    Article  ADS  Google Scholar 

  • Taylor, K.E., and J.E. Penner. 1994. Anthropogenic aerosols and climate change. Nature 369: 734–737.

    Article  ADS  Google Scholar 

  • Thiemens, Mark H., and William C. Trogler. 1991. Nylon production: An unknown source of atmospheric nitrous oxide. Science 251: 932–934.

    Article  ADS  Google Scholar 

  • Tomizuka, A. 2009. Is a box model effective for understanding the carbon cycle? American Journal of Physics 77(2): 150–163.

    Article  ADS  Google Scholar 

  • Trenberth, K.E., L. Smith, T.T. Qian, A.G. Dai, and J. Fasullo. 2007. Estimates of the global water budget and its annual cycle using observational and model data. Journal of Hydrometeorology 8(4): 758–769.

    Article  ADS  Google Scholar 

  • Valero Capilla, Antonio, and Alicia Valero Delgado. 2015. Thanatia: The destiny of the Earth’s mineral resources, 1st ed. London: World Scientific.

    Google Scholar 

  • Valero, Alicia Delgado, Antonio Capilla Valero, and J.B. Gomez. 2011. The crepuscular planet: A model for the exhausted continental crust. Energy 36(1): 694–707.

    Article  Google Scholar 

  • Wadhams, P., V. Pavlov, E. Hansen, and G. Budeus. 2003. Long-lived convective chimneys in the Greenland Sea and their climactic role. Geophysical Research Abstracts 5 (05572).

    Google Scholar 

  • Walker, Gabrielle, and David King. 2009. The hot topic: How to tackle global warming and still keep the lights on. Revised paperback ed. London: Bloomsbury. Original edition, 2008 Bloomsbury London.

    Google Scholar 

  • Walker, James C.G., P.B. Hays, and James F. Kasting. 1981. unknown. Journal of Geophysical Research 86: 9776–9782.

    Article  ADS  Google Scholar 

  • Wasdell, David. 2014. Climate sensitivity and the carbon budget. Apollo-Gaia project.

    Google Scholar 

  • Watson, R.T., L.G. Filho, E. Sanhueza, and A. Janetos. 1992. Greenhouse gases: Sources and sinks. In The Supplementary Report to the IPCC Scientific Assessment, ed. J.T. Houghton, B.A. Callender, and S.K. Varney. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Weiss, R.F. 1981. The temporal and spatial distribution of nitrous oxide. Journal of Geophysical Research 86: 7185–7195.

    Article  ADS  Google Scholar 

  • Wigley, T.M.L. 1989. Possible climate change due to SO2-derived cloud condensation nuclei. Nature 339: 365–367.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ayres, R. (2016). Energy, Water, Climate and Cycles. In: Energy, Complexity and Wealth Maximization. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-30545-5_6

Download citation

Publish with us

Policies and ethics