Skip to main content

Control and Manipulation of Ruminal Fermentation

  • Chapter
  • First Online:
Rumenology

Abstract

Species evolution has shaped an infinite variability of different life forms. In higher animals, especially in mammals, the variability of forms and functions that the digestive system has been taking over is intriguing. It has allowed animals to effectively take advantage of a broad variety of ingested feed. Particularly in herbivores and omnivores, the development of a fermentative chamber found in the digestive system (some anatomists prefer to call it digestive tract) has permitted the symbiotic association with other life forms such as microorganisms. These unicellular organisms like bacteria, protozoa and fungi, at a point in the evolutionary scale, occupied the niche provided by the digestive system, underwent a continuous and intense process of selective pressure and ended up adapting to the specific conditions of this fermentation chamber. On the other hand, through symbiosis, they were able to offer an important enzymatic and metabolic apparatus that is not found in any other higher organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen MS. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. J Dairy Sci. 1997;80:1447–62.

    Article  CAS  PubMed  Google Scholar 

  • Armentano L, Pereira M. Measuring the effectiveness of fiber by animal response trials. J Dairy Sci. 1997;80:1416–25.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, Allison MJ. Rumen metabolism. J Anim Sci. 1983;57 Suppl 2:461–77.

    CAS  PubMed  Google Scholar 

  • Bergen WG, Bates DB. Ionophores: their effect on production efficiency and mode of action. J Anim Sci. 1984;58:1465–83.

    Article  CAS  PubMed  Google Scholar 

  • Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews. 1990;70:567–590.

    Google Scholar 

  • Blanch M, Calsamiglia S, Dilorenzo N, Dicostanzo A, Muetzel S, Wallace RJ. Physiological changes in rumen fermentation during acidosis induction and its control using a multivalent polyclonal antibody preparation in heifers. J Anim Sci. 2009;87:1722–30.

    Article  CAS  PubMed  Google Scholar 

  • Brett E, Waldron K. Physiology and biochemistry of plant cell walls. London: Chapman & Hall; 1996. p. 44–74.

    Google Scholar 

  • Calsamiglia S, Ferret A, Devant M. Effect of pH and pH fluctuation on microbial fermentation and nutrient flow from a dual-flow continuous culture system. J Anim Sci. 2002;85:574–9.

    CAS  Google Scholar 

  • Carulla JE, Kreuzer M, Machmüller A, Hess HD. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust J Agr Res. 2005;56:961–70.

    Article  CAS  Google Scholar 

  • Chalupa W. Rumen by pass and protection of proteins and amino acids. J Dairy Sci. 1975;58:1198–218.

    Article  CAS  PubMed  Google Scholar 

  • Clark H, Klein C, Newton P. Potential management practices and technologies to reduce nitrous oxide, methane and carbon dioxide emissions from New Zealand Agriculture. Ngaherehere: Ministry of Agriculture and Forestry; 2001. Disponível em: http://www.maf.govt.nz/mafnet/rural-nz/sustainable-resource-use/climate/green-house-gas-migration/ghg-mitigation.htm. Acesso em: 10 fev. 2010.

    Google Scholar 

  • Dahlen CR, Dilorenzo N, Diconstanzo A, Lamb GC, Smith LJ. Effects of feeding a polyclonal antibody preparation against Streptococcus bovis or Fusobacterium necrophorum on performance and carcass characteristics of feedlot steers. Journal of Animal Science. 2004;82 Suppl 1:270.

    Google Scholar 

  • Demeyer DI, Van Nevel CJ. Transformations and effects of lipids in the rumen: three decades of research in our university. Arch Anim Nutr. 1995;48:119–34.

    CAS  Google Scholar 

  • Dilorenzo N, Dahlen CR, Diez-Gonzalez F, Lamb GC, Larson JE, Dicostanzo A. Effects of feeding polyclonal antibody preparations on rumen fermentation patterns, performance, and carcass characteristics of feedlot steers. J Anim Sci. 2008;86:3023–32.

    Article  CAS  PubMed  Google Scholar 

  • Dilorenzo N, Dahlen CR, Larson JE, Gill RK, Dicostanzo A. Effects of feeding a polyclonal antibody preparation against selected rumen bacteria on rumen pH of lactating dairy cows. J Anim Sci. 2007;85:135.

    Google Scholar 

  • Dilorenzo N, Diez-Gonzalez F, Dicostanzo A. Effects of feeding polyclonal antibody preparations on ruminal bacterial populations and ruminal pH of steers fed high-grain diets. J Anim Sci. 2006;84:2178–85.

    Article  CAS  PubMed  Google Scholar 

  • Erdman RA. Dietary buffering requirements of the lactating dairy cow: a review. J Dairy Sci. 1988;71:3246–66.

    Article  Google Scholar 

  • Ferguson KA. The protection of dietary proteins and aminoacids against microbial fermentation in the rumen. In: Mcdonald W, Warner ACI, editors. Digestion and metabolism in the ruminant. Armidale: University of New England Publish Unit; 1975. p. 448–64.

    Google Scholar 

  • Firkins JL. Effects of feeding non-forage fiber sources on site of fiber digestion. J Dairy Sci. 1997;80:1426–37.

    Article  CAS  PubMed  Google Scholar 

  • Fuller R. A review: probiotics in man and animals. J Appl Microbiol. 1989;66:365–78.

    CAS  Google Scholar 

  • Galloway DL, Goetsch AL, Patil A, Foster Jr LA, Johnson ZB. Feed intake and digestion by Holstein steers calves consuming low-quality grass supplemented with lasalocid and monensin. Can J Anim Sci. 1993;73:869–79.

    Article  CAS  Google Scholar 

  • Gill HS, Shu Q, Leng A. Immunization with Streptococcus bovis protects against lactic acidosis in sheep. Vaccine. 2000;18:2541–58.

    Article  CAS  PubMed  Google Scholar 

  • Goodrich RD, Garret JE, Gast DR, Kirick MA, Larson DA, Meiske JC. Influence of monensin on the performance of cattle. J Anim Sci. 1984;58:1484–98.

    Article  CAS  PubMed  Google Scholar 

  • Grant RJ. Interactions among forages and non forages fiber sources. J Dairy Sci. 1997;80:1438–46.

    Article  CAS  PubMed  Google Scholar 

  • Hegarty RS, Gerdes R. Hydrogen production and transfer in the rumen. Recent Adv Anim Nutr Aust. 1999;12:37–44.

    Google Scholar 

  • Heinrichs J. Evaluating particle size of forages and TMRs using the Penn State Particle Size Separator. Pennsylvania: College of Agricultural Sciences; 1996. 7p.

    Google Scholar 

  • Hess HD et al. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agr Res. 2003;54:703–13.

    Article  Google Scholar 

  • Huntington GB. Starch utilization by ruminants: from basics to the bunk. J Anim Sci. 1997;75:852–67.

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change—IPCC. Climate change 1992: the supplementary report to the IPCC Scientific Assessment. Cambridge: Cambridge University; 1992. 220p.

    Google Scholar 

  • Johnson DE, Hill TM, Carmean BR, Branine ME, Lodman DW, Ward GM. Perspective on ruminant methane emission. Fort Collins: Colorado State University; 1993.

    Google Scholar 

  • Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73:2483–92.

    Article  CAS  PubMed  Google Scholar 

  • Kamra DN. Rumen microbial ecosystem. Curr Sci. 2005;89:124–35.

    CAS  Google Scholar 

  • Krehbiel CR, Rust SR, Zhang G, Gilliland SE. Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. J Anim Sci. 2003;81:E120–32.

    Google Scholar 

  • Lindsay DB. Ruminant metabolism in the last 100 years. J Agric Sci. 2006;144:205–19.

    Article  Google Scholar 

  • Mackie RI, White BA. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J Dairy Sci. 1990;73:2971–95.

    Article  CAS  PubMed  Google Scholar 

  • Makkar HPS, Blümmel M, Borowy NK, Becker K. Gravimetric determination of tannins and their correlation with chemical and protein precipitation methods. J Sci Food Agric. 1993;61:161–5.

    Article  CAS  Google Scholar 

  • Makkar HPS, Blummel M, Becker K. In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J Sci Food Agric. 1995;69:481–93.

    Article  CAS  Google Scholar 

  • Marino CT. Efeito do preparado de anticorpos policlonais sobre o consumo alimentar, fermentação ruminal e digestibilidade in vivo de bovinos suplementados com três fontes energéticas. Tese (Doutorado), Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Botucatu, 2008, 121p.

    Google Scholar 

  • Martin SA. Nutrient transport by ruminal bacteria: a review. J Anim Sci. 1994;72:3019–31.

    CAS  PubMed  Google Scholar 

  • McGuefey RK, Richadson LF, Wilkinson JID. Ionophores for dairy cattle: currents status and future outlook. J Anim Sci. 2001;84:194–203.

    Google Scholar 

  • McNeil DM et al. Condensed tannins in the genus Leucaena and their nutritional significance for ruminants. In: Shelton HM et al., editors. Leucaena—adaptation, quality in farming system. Canberra: ACIAR; 1998. p. 205–14 (ACIAR proceedings, 86).

    Google Scholar 

  • McSweeney CS, Mackie RI, White BA. Transport and intracellular metabolism of major feed compounds by ruminal bacteria: the potential for metabolic manipulation (Review). Aust J Agr Res. 1994;45:731–56.

    Article  CAS  Google Scholar 

  • Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci. 1997;80:1463–81.

    Article  CAS  PubMed  Google Scholar 

  • Moss AR, Jouany JP, Newbold J. Methane production by ruminants: its contribution to global warming. Ann Zootech. 2000;49:231–53.

    Article  CAS  Google Scholar 

  • Orskov ER, Ryle M. Energy Nutrition in Ruminants. Barking-UK: Elsevier Science Publishers; 1990. 149 pp.

    Google Scholar 

  • Ovchinnikov JA. Physicochemical basis of ion transport through biological membranes: ionophores and ion channels. Eur J Biochem. 1979;94:321–36.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco RDL, Millen DD, Dilorenzo N, Martins CL, Marino CT, Fossa MV, Beier SL, DiCostanzo A, Rodrigues PHM, Arrigoni MB. Effects of feeding a multivalent polyclonal antibody preparation on feedlot performance, carcass characteristics, rumenitis, and blood gas profile in Bos indicus biotype yearling bulls. J Anim Sci. 2012;90(6):1898–909.

    Article  CAS  PubMed  Google Scholar 

  • Passini R, Silveira AC, Rodrigues PHM, Castro LA, Titto EAL, Arrigoni MB, Costa C. Digestibilidade de dietas a base de grão úmido de milho ou de sorgo ensilados. Acta Sci. 2002;24:1147–54.

    Google Scholar 

  • Punia BS. Manipulation of microbial ecosystem in the rumen. Int J Anim Sci. 1998;13:157–64.

    Google Scholar 

  • Reed JD, Soller H, Woodward A. Fodder tree and straw diets for sheep: intake, growth, digestibility and the effects of phenolics on nitrogen utilization. Anim Feed Sci Technol. 1990;30:39–50.

    Article  Google Scholar 

  • Russell JB, Strobel HJ. Minireview: Effect of ionophores on ruminal fermentation. Appl Environ Microbiol. 1989;55:1–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell JB, Hespell RB. Microbial rumen metabolism. J Dairy Sci. 1981;64:1153–69.

    Article  CAS  PubMed  Google Scholar 

  • Schelling GT. Monensin mode of action in the rumen. J Anim Sci. 1984;58:1518–27.

    Article  CAS  PubMed  Google Scholar 

  • Scott TW, Ashes JR. Dietary lipids for ruminants: protection, utilization and effects on remodeling of skeletal muscle phospholipids. Aust J Agric Res. 1993;44:495–508.

    Article  CAS  Google Scholar 

  • Shu Q, Gill HS, Hennessy DW, Leng RA, Bird SH, Rowe JB. Immunisation against lactic acidosis in cattle. Res Vet Sci. 1999;67:65–71.

    Article  CAS  PubMed  Google Scholar 

  • Shu Q, Gill HS, Leng RA, Rowe B. Immunisation with a Streptococcus bovis vaccine administered by different routes against lactic acidosis in sheep. Vet J. 2000;159:262–9.

    Article  CAS  PubMed  Google Scholar 

  • Smith GS. Toxification and detoxification of plant compounds by ruminants: an overview. J Range Manage. 1992;45:25–30.

    Article  Google Scholar 

  • van der Merwe BJ, Dugmore TJ, Walsh KP. The effect of flavophospholipol (Flavomycin) on milk production and milk urea nitrogen concentration of grazing dairy cows. S Afr J Anim Sci. 2001;31:101–5.

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–97.

    Article  PubMed  Google Scholar 

  • Weimer PJ. Manipulating ruminal fermentation: a microbial ecological perspective. J Anim Sci. 1998;76:3114–22.

    Article  CAS  PubMed  Google Scholar 

  • Wuebbles DJ, Hayhoe K. Atmospheric methane and global change. Earth-Sci Rev. 2002;57:177–210.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Henrique Mazza Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodrigues, P.H.M. (2016). Control and Manipulation of Ruminal Fermentation. In: Millen, D., De Beni Arrigoni, M., Lauritano Pacheco, R. (eds) Rumenology. Springer, Cham. https://doi.org/10.1007/978-3-319-30533-2_6

Download citation

Publish with us

Policies and ethics