Skip to main content

Ruminal Acidosis

  • Chapter
  • First Online:
Rumenology

Abstract

Ruminants are herbivores that have developed themselves in biosphere in order to consume forages (grasses and legumes), which are characterized by the high content of cell wall; although there are variations related to ruminants’ species regarding their capacity to select plants with smaller contents of these compounds (Van Soest et al. 1991). The intake of this type of diet keeps the reticulum-rumen (main digestive compartment of these animals) with a set of physical and chemical characteristics that are considered appropriate to maintain the animal’s ruminal microbiota and health. However, due to the need to increase (beef and milk) production, ruminants have been subjected to different diet conditions, from those that they evolved consuming, which may contain large amounts of carbohydrates that quickly ferment in the rumen and cause a series of digestive and metabolic disorders like ruminal and metabolic acidosis, rumenitis, bloat, liver abscesses and laminitis (González et al. 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albright JL. Feeding behavior of dairy cattle. J Dairy Sci. 1993;76:485–98.

    Article  Google Scholar 

  • Aschenbach JR, Bilk S, Tadesse G, Stumpff F, Gabel G. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive apical uptake of acetate in the ruminal epithelium of sheep. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1098–107.

    Article  CAS  PubMed  Google Scholar 

  • Aschenbach JR, Penner GB, Stumpff F, Gäbel G. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J Anim Sci. 2010;89:1092–107.

    Article  PubMed  Google Scholar 

  • Brandini JC. Doenças em bovinos confinados. Campo Grande: EMBRAPA-CNPG, 1996. 62p (Documentos, 65).

    Google Scholar 

  • Brent BE. Relationship of acidosis to other feedlot ailments. J Anim Sci. 1976;43:930.

    Article  CAS  PubMed  Google Scholar 

  • Britton R, Stock R. Acidosis: a continual problem in cattle fed high grain diets. In: Proceedings of the Cornell nutrition conference for feed manufacturers, Cornell University, Ithaca, NY, 1989. p. 9–15.

    Google Scholar 

  • Carter RR, Grovum WL. A review of the physiological significance of hypertonic body fluids on feed intake and ruminal function: salivation, motility and microbes. J Anim Sci. 1990;68:2811–32.

    Article  CAS  PubMed  Google Scholar 

  • Clarke RTJ, Reid CSW. Foamy bloat of cattle. A review. J Dairy Sci. 1974;57:753–85.

    Article  CAS  PubMed  Google Scholar 

  • Cole HH, Huffman CF, Kleiber M, Olson TM, Schalk AF. A review of bloat in ruminants. J Anim Sci. 1945;4:183.

    CAS  Google Scholar 

  • Cook NB, Norlund KV, Oetzel GR. Environmental influences on claw horn lesions associated with laminitis and subacute ruminal acidosis in dairy cows. J Dairy Sci. 2004;87:(E. Suppl.):E36–46.

    Google Scholar 

  • Cooper, R., and T. Klopfenstein. Effect of Rumensin and Feed Intake Variation on Ruminal pH. Scientific Update on Rumensin/Tylan/Micotil for the Professional Feedlot Consultant. Elanco Animal Health, Greenfield, IN. 1996.

    Google Scholar 

  • Cooper RJ, Klopfenstein TJ, Stock RA, Milton CT, Herold DW, Parrott JC. Effects of imposed feed variation on acidosis and performance of finishing steers. J Anim Sci. 1999;77:1093–9.

    Article  CAS  PubMed  Google Scholar 

  • Costa SF, Pereira MN, Melo LQ, Resende Jr JC, Chaves ML. Alterações morfológicas induzidas por butirato, propionato e lactato sobre a mucosaruminal e a epiderme de bezerros—I. Aspectos histológicos. Arq Bras Med Vet Zootec. 2008;60(1):1–9.

    Article  CAS  Google Scholar 

  • Dado RG, Allen MS. Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fibre or inert bulk. J Dairy Sci. 1995;78:118–33.

    Article  CAS  PubMed  Google Scholar 

  • Dilorenzo N. Effects of feeding polyclonal antibody preparations against rumen starch and lactic-fermenting bacteria on target bacteria populations and steer performance. Saint Paul, Minnesota, USA: University of Minnesota, 2004, 101p. Master thesis submitted to the faculty of the graduate school of the University of Minnesota.

    Google Scholar 

  • Dohme F, DeVries TJ, Beauchemin KA. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: ruminal pH. J Dairy Sci. 2008;91:3554–67.

    Article  CAS  PubMed  Google Scholar 

  • Donovan GA, Risco CA, Dechant Temple GM, Tran TQ, Van Horn HH. Influence of transition diets on occurrence of subclinical laminitis in Holstein dairy cows. J Dairy Sci. 2004;87:73–84.

    Article  CAS  PubMed  Google Scholar 

  • Eadie JM, Mann SO. Development of the rumen microbial population: high starch diets and instability. In: Phillipson AT, Annison EF, Armstrong DG, Balch CC, Comline RS, Jardy RN, et al., editors. Physiology of digestion and metabolism in the ruminant. Proceedings of the third international symposium, Newcastle upon Tyne, UK: FRS Oriel Press Ltd.; 1970. p. 335–47.

    Google Scholar 

  • Fell BF, Campbell RM, Mackie WS, WEEIO~S TEC. Changes associated with pregnancy and lactation in some extra reproductive organs of the ewe. J Agric Sci Camb. 1972;79:397–407.

    Article  Google Scholar 

  • Finlayson HJ. The effect of pH on the growth and metabolism of Streptococcus bovis in continuous culture. J Appl Bacteriol. 1986;61:201–8.

    Article  CAS  PubMed  Google Scholar 

  • Fulton WR, Klopfenstein TJ, Britton RA. Adaptation to high concentrate diets by beef cattle: II. Effect of ruminal pH alteration on rumen fermentation and voluntary intake of wheat diets. J Anim Sci. 1979;49:785–9.

    Article  CAS  Google Scholar 

  • Gabel G, Aschenbach JR, Muller F. Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev. 2002;3:15–30.

    Article  CAS  PubMed  Google Scholar 

  • Galyean ML, RIVERA JD. Nutritionally related disorders affecting feedlot cattle. Can J Anim Sci. 2003;83:13–20.

    Article  Google Scholar 

  • Garza JD, OWENS FN, BREAZILE JE. Effects of diet on ruminal liquid and on blood serum osmolality and hematocrit in feedlot heifers. Okla Agric Exp Stn. 1989;MP-127:68–76.

    Google Scholar 

  • Gentile G, Cinotti S, Ferri G, Famigli-Bergamini P. Nutritional acidosis and technological characteristics of milk in high producing dairy cows. In: Harigan PJ, Monaghan ML, editors. Proc. 14th world congr. diseases cattle. Dublin, Ireland, 1986, p. 823.

    Google Scholar 

  • González LA, Ferret A, Manteca X, Ruíz-de-la-Torre JL, Calsammiglia S, Devant A, et al. Performance, behavior, and welfare of Friesian heifers housed in pens with two, four and eight individuals per concentrate feeding place. J Anim Sci. 2008;86:1446–58.

    Article  PubMed  Google Scholar 

  • González LA, Mantecab X, Calsamiglia S, Schwartzkopf-Gensweinc KS, Ferret A. Ruminal acidosis in feedlot cattle: Interplay between feed ingredients, rumen function and feeding behavior (a review). Anim Feed Sci Technol. 2012;172:66–79.

    Article  Google Scholar 

  • Gozho GN, Krause DO, Plaizier JC. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers. J Dairy Sci. 2006;89:4404–13.

    Article  CAS  PubMed  Google Scholar 

  • Hall MB. Recentes avanços em carboidratos não-fibrosos na nutrição de vacas leiteiras. In: SIMLEITE, 2., 2001, Lavras. Anais… Lavras, 2001. p.149–159.

    Google Scholar 

  • Herrera-Saldana R, Huber JT, Poore MH. Dry matter, crude protein and starch degradability of five cereals grains. J Dairy Sci. 1990;73:2386–93.

    Article  CAS  Google Scholar 

  • Horn GW, Gordon JL, Pridge EC, Owens FN. Dietary buffers and ruminal and blood parameters of sub-clinical lactic-acidosis in steers. J Anim Sci. 1979;48:683–91.

    Article  CAS  PubMed  Google Scholar 

  • Huntington GB. Starch utilization by ruminants: from basics to the bunk. J Anim Sci. 1997;75(p):852–67.

    Article  CAS  PubMed  Google Scholar 

  • Huntington GB, Harmon DL, Richards CJ. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci. 2006;84:E14–24.

    Article  PubMed  Google Scholar 

  • Ipharraguerre IR, Clark JH, et al. Soyhulls as an alternative feed for lactating dairy cows: a review. J Dairy Sci. 2003;86(4):1052–73.

    Article  CAS  PubMed  Google Scholar 

  • Jensen R, Deane HM, Cooper LJ, Miller VA, Graham WR. The rumenitis-liver abscess complex in beef cattle. Am J Vet Res. 1954;15(55):202–216.

    CAS  PubMed  Google Scholar 

  • Kaufmann W, Hagemeister H, Dirksen G. Adaptation to changes in dietary composition, level and frequency of feeding. In: Ruckebusch Y, Thivend P. Digestive physiology and metabolism in ruminants: Proceedings of the 5th international symposium on ruminant physiology, held at Clermont—Ferrand, on 3rd–7th Sept, 1979. 1st edn. Netherlands: Springer; 1980. cap. 28, p. 587–602.

    Google Scholar 

  • Koers WC, Britton R, Klopfenstein TJ, Woods WR. Ruminal histamine, lactate and animal performance. J Anim Sci. 1976;43:684–91.

    Article  CAS  PubMed  Google Scholar 

  • Krehbiel CR, Stock RA, Herold DW, Shain DH, Ham GA, Carulla JE. Feeding wet corn gluten feed to reduce subacute acidosis in cattle. J Anim Sci. 1995;73:2931–9.

    Article  CAS  PubMed  Google Scholar 

  • Majak W, McAllister TA, McBartney D, Stanford K, Cheng KJ. Bloat in cattle. Alberta, Canada: Alberta Agriculture, Food, and Rural Development; 2003. p. 1–28.

    Google Scholar 

  • Marino CT, Otero WG, Rodrigues PHM, Dicostanzo A, Millen DD, Pacheco RLD, et al. Effects of adding polyclonal antibody preparations on ruminal fermentation patterns and digestibility of cows fed different energy sources. J Anim Sci. 2011;89:3228–35.

    Article  CAS  PubMed  Google Scholar 

  • McAllister TA, Cheng K-J, Rode LM, Forsberg CW. Digestion of barley, maize, and wheat by selected species of ruminal bacteria. Appl Environ Microbiol. 1990;56:3146–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mertens DT. Physical effective NDF and its use in formulating dairy rations. In: Simpósio Internacional em Bovinos de Leite, 2, 2001, Lavras. Anais… Lavras: UFLA-FAEPE, p. 25–36, 2001.

    Google Scholar 

  • Mgassa MN, Amaya-Posada G, Hesselholt M. Pododermitis aseptica diffusa (laminitis) in free range beef cattle in tropical Africa. Vet Rec. 1984;115:413.

    Article  CAS  PubMed  Google Scholar 

  • Millen DD, Pacheco RDL, Arrigoni MDB, Galyean ML, Vasconcelos JT. A snapshot of management practices and nutritional recommendations used by feedlor nutritionists in Brazil. J Anim Sci. 2009;87:3427–39.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja TG, Chengappa MM. Liver abscesses in feedlot cattle: a review. J Anim Sci. 1998;76:287–98.

    Article  CAS  PubMed  Google Scholar 

  • Nagaraja TG, Titgemeyer EC. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook. J Dairy Sci. 2007;90:17–38.

    Article  Google Scholar 

  • Nagaraja TG, Laudert SB, Parrott JC. Liver abscesses in feedlot cattle. Part 1. Causes, pathogenesis, pathology and diagnosis. Comp Cont Educ Pract Vet. 1996;18:S230–56.

    Google Scholar 

  • Newbold CJ, Williams AG, Chamberlain DG. The in vitro metabolism of d,l-lactic acid by rumen microorganisms. J Sci Food Agric. 1987;38:9–18.

    Article  CAS  Google Scholar 

  • Nocek JE. Bovine acidosis: implications on laminitis. J Dairy Sci. 1997;80:1005–28.

    Article  CAS  PubMed  Google Scholar 

  • Norlund KV. Herd based rumenocentesis: a clinical approach to the diagnosis subacute rumen acidosis. In: Saltman R, editor. Northeast med. symp. Syracuse, NY, 1995, p. 1.

    Google Scholar 

  • Offner A, Bach A, Sauvant D. Quantitative review of in situ starch degradation in the rumen. Anim Feed Sci Technol. 2003;106:81–93.

    Article  CAS  Google Scholar 

  • Oliveira CA, Millen DD. Survey of the nutritional recommendations and management practices adopted by feedlot cattle nutritionists in Brazil. Anim Feed Sci Technol. 2014;197:64–75.

    Article  Google Scholar 

  • Olofsson J. Competition for total mixed diets fed for ad libitum intake using one or four cows per feeding station. J Dairy Sci. 1999;82:69–79.

    Article  CAS  PubMed  Google Scholar 

  • Owens FN, Goetsch AL. Ruminal fermentation. In: Church DC, editor. The ruminant animal digestive physiology and nutrition. Englewood Cliffs, NJ: Reston; 1988. p. 145–71.

    Google Scholar 

  • Owens FN, Secrist DS, Hill WJ, et al. The effect of grain source and grain processing on performance of feedlot cattle: a review. J Anim Sci. 1997;75:868–79.

    Article  CAS  PubMed  Google Scholar 

  • Owens FN, Secrist DS, Hill WJ, Gill DR. Acidosis in cattle: a review. J Anim Sci. 1998;76:275–86.

    Article  CAS  PubMed  Google Scholar 

  • Pacheco RLD. Monensina sódica ou anticorpos policlonais contra bactérias precursoras de distúrbios nutricionais em bovinos induzidos à acidose ruminal. 2010. 118f. Tese (Doutorado em Zootecnia)—Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botutatu, 2010.

    Google Scholar 

  • Parrott, C. Secondary benefits from feeding Rumensin. In: Scientific Update on Rumensin/Tylan for the Professional Feed- lot Consultant. pp H1−H11. Elanco Animal Health, Indianapo- lis, IN. 1993.

    Google Scholar 

  • Pedroso AF, Nussio LG, Loures DRS, et al. Efeito do tratamento com aditivos químicos e inoculantes bacterianos nas perdas e na qualidade de silagens de cana-de-açúcar. Rev Bras Zootec. 2007;36(3):558–64.

    Article  Google Scholar 

  • Phy TS, Provenza FD. Sheep fed grain prefer foods and solutions that attenuate acidosis. J Anim Sci. 1998a;76:954–60.

    Article  CAS  PubMed  Google Scholar 

  • Phy TS, Provenza FD. Eating barley too frequently or in excess decreases lambs’ preference for barley but sodium bicarbonate and lasalocid attenuate the response. J Anim Sci. 1998b;76:1578–83.

    Article  CAS  PubMed  Google Scholar 

  • Pinchak WE, Min BR, Malinowski DP, Sij JW, Gill RJ, Puchala R, et al. Re-evaluation of the frothy bloat complex in cattle grazing winter wheat in the southern plains: evolution of a new integrated paradigm. In: Proc. gastrointestinal function. CGIF, Chicago, IL, 2005. p. 36.

    Google Scholar 

  • Preston RL. Management of high concentrate diets in feedlot. In: Simpósio sobre Produção Intensiva de Gado de Corte, Campinas. Anais…Campinas: CBNA, 1998. p. 89–91.

    Google Scholar 

  • Pritchard RH, Bruns KW. Controlling variation in feed intake through bunk management. J Anim Sci. 2003;81(E. Suppl 2):E133–8.

    Google Scholar 

  • Russell JB, Hino T. Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis. J Dairy Sci. 1985;68:1712–21.

    Article  CAS  PubMed  Google Scholar 

  • Schwartzkopf-Genswein KS, Beauchemin KA, Gibb DJ, DH Crews Jr, DD Hickman, M Streeter, and TA McAllister. Effect of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: a review. J Anim Sci. 2003;81:E149–58.

    Google Scholar 

  • Schwartzkopf-Genswein KS, Beauchemin KA, McAllister TA, Gibb Streeter M, Kennedy AD. Effect of feed delivery fluctuations and feeding time on ruminal acidosis, growth performance, and feeding behaviour of feedlot cattle. J Anim Sci. 2004;82:3357–65.

    Article  CAS  PubMed  Google Scholar 

  • Scott D. Changes in mineral, water and acid base balance associated with feeding and diet. Digestion and metabolismo in the ruminant. In: McDonald IW, Warner ACI, editors. Proceedings of the IV international symposium on ruminant physiology. 1974. The University of New England Publishing Unit, 1975.

    Google Scholar 

  • Slyter LL. Influence of acidosis on rumen function. J Anim Sci. 1976;43:910–29.

    Article  CAS  PubMed  Google Scholar 

  • Soto-Navarro SA, Duff GC, Krehbiel C-R, Galyean ML, Malcom-Callis KJ. Influence of feed intake fluctuation, feeding frequency, time of feeding and rate gain on performance by limit-fed steers. Prof Anim Sci. 2000;16:13–20.

    Google Scholar 

  • Stedman TL. Stedmans’s medical dictionary. Baltimore, MD: Williams and Wilkins; 1982.

    Google Scholar 

  • Stock RA, Laudert SB, Stroup WW, Larson EM, Parrott JC, Britton RA. Effect of monensin and monensin and tylosin combination on feed intake variation of feedlot steers. J Anim Sci. 1995;73:39–44.

    Article  CAS  PubMed  Google Scholar 

  • Stock R, Britton RL. Acidosis. NebGuide, University of Nebraska-Lincoln, 1996. Adresse: http://www.ianr.unl.edu/pubs/animaldisease/g1047.htm.

  • Stone WC. Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. J Dairy Sci. 2004;87(E. Suppl.):E13–26.

    Google Scholar 

  • Tabaru H, Ikeda K, Kadota E, Murakami Y, Yamada H, Sasaki N, et al. Effects of osmolality on water, electrolytes and vfas absorption from the isolated ruminoreticulum in the cow. Jpn J Vet Sci. 1990;52(1):91–6.

    Article  CAS  Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J Dairy Sci. 1991;74:3583–97.

    Article  PubMed  Google Scholar 

  • Vogel, G. Rumensin efficacy; A review of large pen research trials. In: Scientific Update on Rumensin/Tylan/Mycotil for the Professional Feedlot Consultant. pp B1–B10. Elanco Animal Health, Indianapolis, IN. 1996.

    Google Scholar 

  • Walter A, Gutknecht J. Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol. 1986;90:207–17.

    Article  CAS  PubMed  Google Scholar 

  • Williams AG, Coleman GS. The rumen protozoa. New York: Brock/Springer Series in Contemporary Bioscience, Springer Verlag; 1992.

    Book  Google Scholar 

  • Williams VJ, Mackenzie DD. The absorption of lactic acid from the reticulo-rumen of the sheep. Aust J Biol Sci. 1965;18:917–34.

    Article  CAS  PubMed  Google Scholar 

  • Yang CM. Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. J Dairy Sci. 2002;85:1183–90.

    Article  CAS  PubMed  Google Scholar 

  • Zinn RA. Effects of levels and patterns of intake on digestive function in feedlot steers. Stillwater: Proceedings Symposium Intake by Feedlot Cattle; 1995. p. 167–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Domingues Millen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Millen, D.D., Pacheco, R.D.L., da Silva Cabral, L., Cursino, L.L., Watanabe, D.H.M., Rigueiro, A.L.N. (2016). Ruminal Acidosis. In: Millen, D., De Beni Arrigoni, M., Lauritano Pacheco, R. (eds) Rumenology. Springer, Cham. https://doi.org/10.1007/978-3-319-30533-2_5

Download citation

Publish with us

Policies and ethics