Skip to main content

Rumen Models

  • Chapter
  • First Online:
Rumenology

Abstract

When ruminants consume some sort of feed, especially forage, a part of the organic matter ingested returns to the mouth to be chewed, and then swallowed again (Russell 2002). Consequently, part of this feed is degraded by ruminal microorganisms, which produce short-chain fatty acids (SFCA) that will supply the energy requirements of the host; whereas the particles that were not degraded, especially those smaller than 1.18 mm, by pass to the omasum via reticular-omasal orifice. In general, the facts just described is what happens during the day as a result of feeding of ruminants; however, it’s needed to understand the fermentation dynamic of various feedstuffs, as well as their rate of passage through the rumen and nutritional implications related to animal performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldwin RL, Lucas HL, Cabrera R. Energetic relationships in the formation and utilization of fermentation end-products. In: Phillipson AT, editor. Physiology of digestion and metabolism in the ruminant. Newcastle: Oriel Press; 1970. p. 319–35.

    Google Scholar 

  • Baldwin RL, France J, Beever DE, Gill M, Thornley JH. Metabolism of the lactating cow: III. Properties of mechanistic models suitable for evaluation of energetic relationships and factors involved in the partition of nutrients. J Dairy Res. 1987a;54:133–45.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, France J, Gill M. Metabolism of the lactating cow: I. Animal elements of a mechanistic model. J Dairy Res. 1987b;54:77–105.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, Thornley JH, Beever DE. Metabolism of the lactating cow: II. Digestive elements of a mechanistic model. J Dairy Res. 1987c;54:107–31.

    Article  CAS  PubMed  Google Scholar 

  • Bannink A, De Visser H, Dijkstra J, France J. Impact of diet-specific input parameters on simulated rumen function. J Theor Biol. 1997;184:371–84.

    Article  Google Scholar 

  • Bannink A, Kogut J, Dijkstra J, France J, Kebreab E, Van Vuuren AM, et al. Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows. J Theor Biol. 2006a;238:36–51.

    Article  CAS  PubMed  Google Scholar 

  • Bannink A, Dijkstra J, Kebreab E, France J. Advantages of a dynamical approach to rumen function to help to resolve environmental issues. In: Nutrient Digestion and Utilization in Farm Animals: Modelling Approaches. Kebreab, E., Dijkstra, J., Bannink, A., Gerrits,W.J.J., France, J., Wallingford: CAB International. 2006. p. 281–298.

    Google Scholar 

  • Box GEP. Robustness in the strategy of scientific model building. In: Robustness in Statistics. Launer, RL., Wilkinson, GN. Academic Press Inc. 1979. p. 201–236.

    Google Scholar 

  • Cole NA, Johnson RR, Owens FN. Influence of roughage level on the site and extent of digestion of whole shelled corn by beef steers. J Anim Sci. 1976a;43(2):483–9.

    Article  CAS  Google Scholar 

  • Cole NA, Johnson RR, Owens FN. Influence of roughage level and corn processing method on the site and extent of digestion by beef steers. J Anim Sci. 1976b;43(2):490–6.

    Article  CAS  Google Scholar 

  • Danfær A, Huhtanen P, Udén P, Sveinbjörnsson J, Volden H. The Nordic dairy cow model, karoline—description. In: Kebreab E, Dijkstra J, France J, Bannink A, Gerrits WJJ, editors. Modelling nutrient utilization in farm animals. Wallingford: CAB International; 2006. p. 383–406.

    Chapter  Google Scholar 

  • Dijkstra J, Neal HD, Beever DE, France J. Simulation of nutrient digestion, absorption and outflow in the rumen: model description. J Nutr. 1992;122:2239–56.

    CAS  PubMed  Google Scholar 

  • Fox D, Sniffen C, O’Connor J, Russell J, van Soest P. A net carbohydrate and protein system for evaluating cattle diets: Part III. Cattle requirements and diet adequacy. J Anim Sci. 1992;70:3578–96.

    Article  CAS  PubMed  Google Scholar 

  • Fox D, Tylutki T, van Amburgh M, Chase L, Pell A, Overton T, et al. The net carbohydrate and protein system for evaluating herd nutrition and nutrient excretion. MOL version 4.0.31. Model documentation. Ithaca, NY: Department of Animal Science, Cornell University Press; 2000. p. 23.

    Google Scholar 

  • France J, Thornley JHM. Mathematical models in agriculture. London: Butterworths; 1984. 335p.

    Google Scholar 

  • France J, Thornley JHM, Beever DE. A mathematical model of the rumen. J Agric Sci. 1982;99:343–53.

    Article  CAS  Google Scholar 

  • Freetly HC, Knapp JR, Calvert CC, Baldwin RL. Development of a mechanistic model of liver metabolism in the lactating cow. Agric Syst. 1993;41:157–95.

    Article  Google Scholar 

  • Hanigan MD, Bateman HG, Fadel JG, McNamara JP. Metabolic models of ruminant metabolism: recent improvements and current status. J Dairy Sci. 2006;89 Suppl 1:E52–64.

    Article  PubMed  Google Scholar 

  • Johnson HA, Maas JA, Calvert CC, Baldwin RL. Use of computer simulation to teach a systems approach to metabolism. J Anim Sci. 2008;86:483–99.

    Article  CAS  PubMed  Google Scholar 

  • Kebreab E, Mills JAN, Crompton LA, Bannink A, Dijkstra J, Gerrits WJJ, et al. An integrated mathematical model to evaluate nutrient partition in dairy cattle between animal and environment. Anim Feed Sci Technol. 2004;112:131–54.

    Article  CAS  Google Scholar 

  • Kebreab E, Johnson KA, Archibeque SL, Pape D, Wirth T. Model for estimating enteric methane emissions from United States dairy and feedlot cattle. J Anim Sci. 2008;86:2738–48.

    Article  CAS  PubMed  Google Scholar 

  • Kohn RA, Boston RC, Ferguson JD, Chalupa W. The integration and comparison of dairy cows models. In: Danfaer A, Lescoat P, editors. Proceedings of the fourth international workshop on modelling nutrient utilization in farm animals. Denmark: Foulum; 1995. p. 117–28.

    Google Scholar 

  • Lescoat P, Sauvant D. Development of a mechanistic model for rumen digestion validated using duodenal flux of amino acids. Reprod Nutr Dev. 1995;35:45–70.

    Article  CAS  PubMed  Google Scholar 

  • Mills JAN, Dijkstra J, Bannink A, Cammell SB, Kebreab E, France J. A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation, and application. J Anim Sci. 2001;79:1584–97.

    Article  CAS  PubMed  Google Scholar 

  • Offner A, Sauvant D. Comparative evaluation of the Molly, CNCPS, and LES rumen models. Anim Feed Sci Technol. 2004;112(1):107–30.

    Article  CAS  Google Scholar 

  • Orskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 1979;92:499–503.

    Article  Google Scholar 

  • Pitt RE, Van Kessel JS, Fox DG, Pell AN, Barry MC, Van Soest PJ. Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. J Anim Sci. 1996;74:226–44.

    Article  CAS  PubMed  Google Scholar 

  • Russell JB. Rumen microbiology and its role in ruminant nutrition. Ithaca: James B. Russell; 2002. p. 119.

    Google Scholar 

  • Russell J, O’Connor J, Fox D, van Soest P, Sniffen C. A net carbohydrate and protein system for evaluating cattle diets: Part I. Ruminal fermentation. J Anim Sci. 1992;70:3551–61.

    Article  CAS  PubMed  Google Scholar 

  • Sniffen C, O’Connor J, van Soest P, Fox D, Russell J. A net carbohydrate and protein system for evaluating cattle diets: Part II. Carbohydrate and protein availability. J Anim Sci. 1992;70:3562–77.

    Article  CAS  PubMed  Google Scholar 

  • Tylutki TP et al. Cornell net carbohydrate and protein system: a model for precision feeding of dairy cattle. Anim Feed Sci Technol. 2007;143:74. doi:10.1016/j.anifeedsci.2007.05.010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo D. Cruz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cruz, G.D., Millen, D.D., Rigueiro, A.L.N. (2016). Rumen Models. In: Millen, D., De Beni Arrigoni, M., Lauritano Pacheco, R. (eds) Rumenology. Springer, Cham. https://doi.org/10.1007/978-3-319-30533-2_10

Download citation

Publish with us

Policies and ethics