Skip to main content

Computer Simulations and Computational Models in Science

  • Chapter
Springer Handbook of Model-Based Science

Part of the book series: Springer Handbooks ((SHB))

Abstract

Computational science and computer simulations have significantly changed the face of science in recent times, even though attempts to extend our computational capacities are by no means new and computer simulations are more or less accepted across scientific fields as legitimate ways of reaching results (Sect. 34.1). Also, a great variety of computational models and computer simulations can be met across science, in terms of the types of computers, computations, computational models, or physical models involved and they can be used for various types of inquiries and in different scientific contexts (Sect. 34.2). For this reason, epistemological analyses of computer simulations are contextual for a great part. Still, computer simulations raise general questions regarding how their results are justified, how computational models are selected, which type of knowledge is thereby produced (Sect. 34.3), or how computational accounts of phenomena partly challenge traditional expectations regarding the explanation and understanding of natural systems (Sect. 34.4). Computer simulations also share various epistemological features with experiments and thought experiments; hence, the need for transversal analyses of these activities (Sect. 34.5). Finally, providing a satisfactory and fruitful definition of computer simulations turns out to be more difficult than expected, partly because this notion is at the crossroads of difficult questions like the nature of representation and computation or the success of scientific inquiries (Sect. 34.6). Overall, a pointed analysis of computer simulations in parallel requires developing insights about the evolving place of human capacities and humans within (computational) science (Sect. 34.7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

CA:

cellular automata

CERN:

European Organization for Nuclear Research

DDI:

denotation, demonstration, interpretation

DN:

deductive-nomological

ENIAC:

electronic numerical integrator and computer

fMRI:

functional magnetic resonance imaging

References

  1. M. Mahoney: The histories of computing(s), Interdiscip. Sci. Rev. 30(2), 119–135 (2005)

    Article  Google Scholar 

  2. A.M. Turing: Computing machinery and intelligence, Mind 59, 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  3. A. Newell, A.S. Herbert: Computer science as empirical inquiry: Symbols and search, Commun. ACM 19(3), 113–126 (1976)

    Article  MathSciNet  Google Scholar 

  4. Z.W. Pylyshyn: Computation and Cognition: Toward a Foundation for Cognitive Science (MIT Press, Cambridge 1984)

    Google Scholar 

  5. H. Putnam: Brains and behavior. In: Analytical Philosophy: Second Series, ed. by R.J. Butler (Blackwell, Oxford 1963)

    Google Scholar 

  6. J.A. Fodor: The Language of Thought (Crowell, New York 1975)

    Google Scholar 

  7. P. Humphreys: Computer simulations, Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 2, ed. by A. Fine, M. Forbes, L. Wessels (Univ. Chicago Press, Chicago 1990) pp. 497–506

    Google Scholar 

  8. P. Humphreys: Numerical experimentation. In: Philosophy of Physics, Theory Structure and Measurement Theory, Patrick Suppes: Scientific Philosopher, Vol. 2, ed. by P. Humphreys (Kluwer, Dordrecht 1994)

    Google Scholar 

  9. F. Rohrlich: Computer simulations in the physical sciences, Proceedings of the Biennial Meeting of the Philosophy of Science Association, ed. by A. Fine, M. Forbes, L. Wessels (Univ. Chicago Press, Chicago 1991) pp. 507–518

    Google Scholar 

  10. S. Hartmann: The world as a process: Simulations in the natural and social sciences. In: Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, Theory and Decision Library, ed. by R. Hegselmann, U. Mueller, K.G. Troitzsch (Kluwer, Dordrecht 1996) pp. 77–100

    Google Scholar 

  11. M. Bunge: Analogy, simulation, representation, Rev. Int. Philos. 87, 16–33 (1969)

    Google Scholar 

  12. H.A. Simon: The Sciences of the Artificial (MIT Press, Boston 1969)

    Google Scholar 

  13. R.I.G. Hughes: The Ising model, computer simulation, and universal physics. In: Models as Mediators: Perspectives on Natural and Social Science, ed. by M.S. Morgan, M. Morrison (Cambridge Univ. Press, Cambridge 1999) pp. 97–145

    Chapter  Google Scholar 

  14. S. Sismondo: Models, simulations, and their objects, Sci. Context 12(2), 247–260 (1999)

    Article  Google Scholar 

  15. E. Winsberg: Sanctioning models: The epistemology of simulation, Sci. Context 12(2), 275–292 (1999)

    Article  Google Scholar 

  16. E. Winsberg: Simulations, models, and theories: Complex physical systems and their representations, Philos. Sci. 68, S442–S454 (2001)

    Article  Google Scholar 

  17. E. Winsberg: Simulated experiments: Methodology for a virtual world, Philos. Sci. 70(1), 105–125 (2003)

    Article  Google Scholar 

  18. M. Black: Models and Metaphors: Studies in Language and Philosophy (Cornell Univ. Press, New York 1968)

    Google Scholar 

  19. M. Hesse: Models and Analogies in Science (Sheed Ward, London 1963)

    Google Scholar 

  20. M. Redhead: Models in physics, Br. J. Philos. Sci. 31, 145–163 (1980)

    Article  MathSciNet  Google Scholar 

  21. N. Cartwright: How the Laws of Physics Lie (Clarendon, Oxford 1983)

    Book  Google Scholar 

  22. M. Morgan, M. Morrison: Models as Mediators (Cambridge Univ. Press, Cambridge 1999)

    Book  Google Scholar 

  23. B. Van Fraassen: Scientific Representation: Paradoxes of Perspective (Clarendon Press, Oxford 2008)

    Book  Google Scholar 

  24. R. Frigg: Scientific representation and the semantic view of theories, Theoria 55, 49–65 (2006)

    MathSciNet  MATH  Google Scholar 

  25. M. Suárez: An inferential conception of scientific representation, Philos. Sci. 71(5), 767–779 (2004)

    Article  Google Scholar 

  26. R. Laymon: Computer simulations, idealizations and approximations, Proceedings of the Biennial Meeting of the Philosophy of Science Association (Univ. Chicago Press, Chicago 1990) pp. 519–534

    Google Scholar 

  27. R.N. Giere: Understanding Scientific Reasoning (Holt Rinehart Winston, New York 1984)

    Google Scholar 

  28. R.N. Giere: Explaining Science: A Cognitive Approach (Univ. Chicago Press, Chicago 1988)

    Book  Google Scholar 

  29. J. Kulvicki: Knowing with images: Medium and message, Philos. Sci. 77(2), 295–313 (2010)

    Article  Google Scholar 

  30. R. Frigg, J. Reiss: The philosophy of simulation: Hot new issues or same old stew?, Synthese 169(3), 593–613 (2008)

    Article  MathSciNet  Google Scholar 

  31. M. Mahoney: The history of computing in the history of technology, Ann. Hist. Comput. 10(2), 113–125 (1988)

    Article  MATH  Google Scholar 

  32. D.A. Grier: Human computers: The first pioneers of the information age, Endeavour 25(1), 28–32 (2001)

    Article  Google Scholar 

  33. L. Daston: Enlightenment calculations, Crit. Inq. 21(1), 182–202 (1994)

    Article  MathSciNet  Google Scholar 

  34. I. Grattan-Guinness: Work for the hairdressers: The production of de Prony’s logarithmic and trigonometric tables, Ann. Hist. Comput. 12(3), 177–185 (1990)

    Article  MATH  Google Scholar 

  35. T. Schelling: Models of segregation, Am. Econ. Rev. 59(2), 488–493 (1969)

    Google Scholar 

  36. A. Johnson, J. Lenhard: Towards a new culture of prediction. Computational modeling in the era of desktop computing. In: Science Transformed?: Debating Claims of an Epochal Break, ed. by A. Nordmann, H. Radder, G. Schiemann (Univ. Pittsburgh Press, Pittsburgh 2011)

    Google Scholar 

  37. A. Lehtinen, J. Kuorikoski: Computing the perfect model: Why do economists shun simulation?, Philos. Sci. 74(3), 304–329 (2007)

    Article  Google Scholar 

  38. R. Hegselmann, U. Mueller, K.G. Troitzsch: Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View (Springer, Dordrecht, Pays-Bas 1996)

    Book  Google Scholar 

  39. G.N. Gilbert, K.G. Troitzsch: Simulation for the Social Scientist (Open Univ. Press, Berkshire 2005)

    Google Scholar 

  40. J. Reiss: A plea for (good) simulations: Nudging economics toward an experimental science, Simul. Gaming 42(2), 243–264 (2011)

    Article  Google Scholar 

  41. P. Humphreys: Extending Ourselves. Computational Science, Empiricism, and Scientific Method (Oxford Univ. Press, Oxford 2004)

    Book  Google Scholar 

  42. P. Humphreys: Computational science and its effects. In: Science in the Context of Application, Boston Studies in the Philosophy of Science, Vol. 274, ed. by M. Carrier, A. Nordmann (Springer, New York 2011), pp. 131–142, Chap. 9

    Google Scholar 

  43. A. Barberousse, C. Imbert: Le tournant computationnel et l’innovation théorique. In: Précis de Philosophie de La Physique, ed. by S. Le Bihan (Vuibert, Paris 2013), in French

    Google Scholar 

  44. I. Lakatos: Falsification and the methodology of scientific research programmes. In: Criticism and the Growth of Knowledge, ed. by I. Lakatos, A. Musgrave (Cambridge Univ. Press, Cambridge 1970) pp. 91–195

    Chapter  Google Scholar 

  45. T. Knuuttila, A. Loettgers: Magnets, spins, and neurons: The dissemination of model templates across disciplines, The Monist 97(3), 280–300 (2014)

    Article  Google Scholar 

  46. T. Knuuttila, A. Loettgers: The productive tension: Mechanisms vs. templates in modeling the phenomena. In: Representations, Models, and Simulations, ed. by P. Humphreys, C. Imbert (Routledge, New York 2012) pp. 3–24

    Google Scholar 

  47. A. Carlson, T. Carey, P. Holsberg (Eds.): Handbook of Analog Computation, 2nd edn. (Electronic Associates, Princeton 1967)

    Google Scholar 

  48. M.C. Gilliland: Handbook of Analog Computation: Including Application of Digital Control Logic (Systron-Donner Corp, Concord 1967)

    Google Scholar 

  49. V.M. Kendon, K. Nemoto, W.J. Munro: Quantum analogue computing, Philos. Trans. R. Soc. A 368, 3609–3620 (2010), 1924

    Article  MathSciNet  MATH  Google Scholar 

  50. C. Shannon: The mathematical theory of communication, Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  51. M.B. Pour-el: Abstract computability and its relation to the general purpose analog computer (Some connections between logic, differential equations and analog computers), Trans. Am. Math. Soc. 199, 1–28 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Pour-El, I. Richards: Computability in Analysis and in Physics. Perspective in Mathematical Logic (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  53. E. Arnold: Experiments and simulations: Do they fuse? In: Computer Simulations and the Changing Face of Scientific Experimentation, ed. by J.M. Durán, E. Arnold (Cambridge Scholars Publishing, Newcastle upon Tyne 2013)

    Google Scholar 

  54. R. Trenholme: Analog simulation, Philos. Sci. 61(1), 115–131 (1994)

    Article  Google Scholar 

  55. P.K. Kundu, I.M. Cohen, H.H. Hu: Fluid Mechanics, 3rd edn. (Elsevier, Amsterdam 2004)

    Google Scholar 

  56. S.G. Sterrett: Models of machines and models of phenomena, Int. Stud. Philos. Sci. 20, 69–80 (2006)

    Article  Google Scholar 

  57. S.G. Sterrett: Similarity and dimensional analysis. In: Philosophy of Technology and Engineering Sciences, ed. by A. Meijers (Elsevier, Amsterdam 2009)

    Google Scholar 

  58. G.I. Barenblatt: Scaling, Self-Similarity, and Intermediate Asymptotics, Cambridge Texts in Applied Mathematics, Vol. 14 (Cambridge Univ. Press, Cambridge 1996)

    Book  MATH  Google Scholar 

  59. R.W. Shonkwiler, L. Lefton: An Introduction to Parallel and Vector Scientific Computing (Cambridge Univ. Press, Cambridge 2006)

    Book  MATH  Google Scholar 

  60. M.J. Borwein, R.E. Crandall: Closed forms: What they are and why we care, Not. Am. Math. Soc. 60(1), 50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. B. Fillion, S. Bangu: Numerical methods, complexity, and epistemic hierarchies, Philos. Sci. 82(5), 941–955 (2015)

    Article  MathSciNet  Google Scholar 

  62. N. Fillion, R.M. Corless: On the epistemological analysis of modeling and computational error in the mathematical sciences, Synthese 191(7), 1451–1467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Feynman: Simulating physics with computers, Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  64. T. Toffoli: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics, Physica D 10, 117–127 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. N. Margolus: Crystalline computation. In: Feynman and Computation: Exploring the Limits of Computers, ed. by A. Hey (Westview, Boulder 2002)

    Google Scholar 

  66. R. Hegselmann: Understanding social dynamics: The cellular automata approach. In: Social Science Microsimulation, ed. by K.G. Troitzsch, U. Mueller, G.N. Gilbert, J. Doran (Springer, London 1996) pp. 282–306

    Chapter  Google Scholar 

  67. C.G. Langton: Studying artificial life with cellular automata, Physica D 22, 120–149 (1986)

    Article  MathSciNet  Google Scholar 

  68. B. Hasslacher: Discrete Fluids, Los Alamos Sci. Special issue 15, 175–217 (1987)

    MathSciNet  Google Scholar 

  69. N. Metropolis, S. Ulam: The Monte Carlo method, J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  MATH  Google Scholar 

  70. P. Galison: Computer simulations and the trading zone. In: The Disunity of Science: Boundaries, Contexts, and Power, ed. by P. Galison, D. Stump (Stanford Univ. Press, Stanford 1996) pp. 118–157

    Google Scholar 

  71. P. Galison: Image and Logic: A Material Culture of Microphysics (Univ. Chicago Press, Chicago 1997)

    Google Scholar 

  72. C. Beisbart, J. Norton: Why Monte Carlo simulations are inferences and not experiments. In: International Studies in Philosophy of Science, Vol. 26, ed. by J.W. McAllister (Routledge, Abington 2012) pp. 403–422

    Google Scholar 

  73. S. Succi: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon, Oxford 2001)

    MATH  Google Scholar 

  74. A.M. Bedau: Weak emergence, Philos. Perspect. 11(11), 375–399 (1997)

    Google Scholar 

  75. T. Grüne-Yanoff: The explanatory potential of artificial societies, Synthese 169(3), 539–555 (2009)

    Article  Google Scholar 

  76. B. Epstein: Agent-based modeling and the fallacies of individualism. In: Models, Simulations, and Representations, ed. by P. Humphreys, C. Imbert (Routledge, London 2011) p. 115444

    Google Scholar 

  77. S.B. Pope: Turbulent Flows (Cambridge Univ. Press, Cambridge 2000)

    Book  MATH  Google Scholar 

  78. P.N. Edwards: A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (MIT Press, Cambridge 2010)

    Google Scholar 

  79. M. Heymann: Understanding and misunderstanding computer simulation: The case of atmospheric and climate science – An introduction, Stud. Hist. Philos. Sci. Part B 41(3), 193–200 (2010), Special Issue: Modelling and Simulation in the Atmospheric and Climate Sciences

    Article  Google Scholar 

  80. E. Winsberg: Handshaking your way to the top: Inconsistency and falsification in intertheoretic reduction, Philos. Sci. 73, 582–594 (2006)

    Article  Google Scholar 

  81. P. Humphreys: Scientific knowledge. In: Handbook of Epistemology, ed. by I. Niiniluoto, M. Sintonen, J. Woleński (Springer, Dordrecht 2004)

    Google Scholar 

  82. W.S. Parker: Understanding pluralism in climate modeling, Found. Sci. 11(4), 349–368 (2006)

    Article  Google Scholar 

  83. W.S. Parker: Ensemble modeling, uncertainty and robust predictions, Wiley Interdiscip. Rev.: Clim, Change 4(3), 213–223 (2013)

    Google Scholar 

  84. M. Sundberg: Cultures of simulations vs. cultures of calculations? The development of simulation practices in meteorology and astrophysics, Stud. Hist. Philos. Sci. Part B 41, 273–281 (2010), Special Issue: Modelling and simulation in the atmospheric and climate sciences

    Article  Google Scholar 

  85. M. Sundberg: The dynamics of coordinated comparisons: How simulationists in astrophysics, oceanography and meteorology create standards for results, Soc. Stud. Sci. 41(1), 107–125 (2011)

    Article  Google Scholar 

  86. E. Tal: From data to phenomena and back again: Computer-simulated signatures, Synthese 182(1), 117–129 (2011)

    Article  MathSciNet  Google Scholar 

  87. R. El Skaf, C. Imbert: Unfolding in the empirical sciences: Experiments, thought experiments and computer simulations, Synthese 190(16), 3451–3474 (2013)

    Article  Google Scholar 

  88. L. Soler, S. Zwart, M. Lynch, V. Israel-Jost: Science After the Practice Turn in the Philosophy, History, and Social Studies of Science (Routledge, London 2014)

    Google Scholar 

  89. H. Chang: The philosophical grammar of scientific practice, Int. Stud. Philos. Sci. 25(3), 205–221 (2011)

    Article  Google Scholar 

  90. H. Chang: Epistemic activities and systems of practice: Units of analysis in philosophy of science after the practice turn. In: Science After the Practice Turn in the Philosophy, History and Social Studies of Science, ed. by L. Soler, S. Zwart, M. Lynch, V. Israel-Jost (Routledge, London 2014) pp. 67–79

    Google Scholar 

  91. A. Barberousse, S. Franceschelli, C. Imbert: Computer simulations as experiments, Synthese 169(3), 557–574 (2009)

    Article  MathSciNet  Google Scholar 

  92. P. Grim, R. Rosenberger, A. Rosenfeld, B. Anderson, R.E. Eason: How simulations fail, Synthese 190(12), 2367–2390 (2013)

    Article  MathSciNet  Google Scholar 

  93. J.H. Fetzer: Program verification: The very idea, Commun. ACM 31(9), 1048–1063 (1988)

    Article  Google Scholar 

  94. A. Asperti, H. Geuvers, R. Natarajan: Social processes, program verification and all that, Math. Struct. Comput. Sci. 19(5), 877–896 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  95. W.L. Oberkampf, C.J. Roy: Verification and Validation in Scientific Computing (Cambridge Univ. Press, Cambridge 2010)

    Book  MATH  Google Scholar 

  96. W.S. Parker: Computer simulation. In: The Routledge Companion to Philosophy of Science, ed. by S. Psillos, M. Curd (Routledge, London 2013)

    Google Scholar 

  97. J. Lenhard: Computer simulation: The cooperation between experimenting and modeling, Philos. Sci. 74(2), 176–194 (2007)

    Article  MathSciNet  Google Scholar 

  98. N. Oreskes, K. Shrader-Frechette, K. Belitz: Verification, validation, and confirmation of numerical models in the earth sciences, Science 263(5147), 641–646 (1994)

    Article  Google Scholar 

  99. J. Lenhard, E. Winsberg: Holism, entrenchment, and the future of climate model pluralism, Stud. Hist. Philos. Sci. 41(3), 253–262 (2010)

    Article  Google Scholar 

  100. A. Barberousse, C. Imbert: New mathematics for old physics: The case of lattice fluids, Stud. Hist. Philos. Sci. Part B 44(3), 231–241 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  101. J.M. Boumans: Understanding in economics: Gray-box models. In: Scientific Understanding: Philosophical Perspectives, ed. by H.W. de Regt, S. Leonelli, K. Eigner (Univ. Pittsburgh Press, Pittsburgh 2009)

    Google Scholar 

  102. C. Imbert: L’opacité intrinsèque de la nature: Théories connues, phénomènes difficiles à expliquer et limites de la science, Ph.D. Thesis (Atelier national de Reproduction des Thèses, Lille 2008), http://www.theses.fr/2008PA010703.

    Google Scholar 

  103. J. Hardwig: The role of trust in knowledge, J. Philos. 88(12), 693–708 (1991)

    Article  Google Scholar 

  104. H. Reichenbach: On probability and induction, Philos. Sci. 5(1), 21–45 (1938), reprinted in S. Sarkar (Ed.) Logic, Probability and Induction (Garland, New York 1996)

    Article  MATH  Google Scholar 

  105. A. Barberousse, C. Imbert: Recurring models and sensitivity to computational constraints, The Monist 97(3), 259–279 (2014)

    Article  Google Scholar 

  106. T. Kuhn: The Structure of Scientific Revolutions, 3rd edn. (The Univ. Chicago Press, Chicago 1996)

    Book  Google Scholar 

  107. P. Kitcher: Explanatory unification and the causal structure of the world. In: Scientific Explanation, ed. by P. Kitcher, W. Salmon (Univ. Minnesota Press, Minneapolis 1989)

    Google Scholar 

  108. R. De Langhe: A unified model of the division of cognitive labor, Philos. Sci. 81(3), 444–459 (2014)

    Article  MathSciNet  Google Scholar 

  109. A. Lyon: Why are normal distributions normal?, Br. J. Philos. Sci. (2013), doi:10.1093/bjps/axs046

  110. R. Batterman: Why equilibrium statistical mechanics works: Universality and the renormalization group, Philos. Sci. 65, 183–208 (1998)

    Article  MathSciNet  Google Scholar 

  111. R. Batterman: Multiple realizability and universality, Br. J. Philos. Sci. 51, 115–145 (2000)

    Article  Google Scholar 

  112. R. Batterman: Asymptotics and the role of minimal models, Br. J. Philos. Sci. 53, 21–38 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  113. E. Winsberg: A tale of two methods, Synthese 169(3), 575–592 (2009)

    Article  Google Scholar 

  114. S.D. Norton, F. Suppe: Why atmospheric modeling is good science. In: Changing the Atmosphere: Expert Knowledge and Environmental Governance, ed. by P. Edwards, C. Miller (MIT Press, Cambridge 2001)

    Google Scholar 

  115. C. Beisbart: How can computer simulations produce new knowledge?, Eur. J. Philos. Sci. 2, 395–434 (2012)

    Article  MATH  Google Scholar 

  116. E.A. Di Paolo, J. Noble, S. Bullock: Simulation models as opaque thought experiments, Proc. 7th Int. Conf. Artif. Life, ed. by K.A. Bedau, J.S. McCaskill, N. Packard, S. Rasmussen (MIT Press, Cambridge 2000) pp. 497–506

    Google Scholar 

  117. S. Chandrasekharan, N.J. Nersessian, V. Subramanian: Computational modeling: Is this the end of thought experimenting in science? In: Thought Experiments in Philosophy, Science and the Arts, ed. by J. Brown, M. Frappier, L. Meynell (Routledge, London 2012) pp. 239–260

    Google Scholar 

  118. J.D. Norton: Are thought experiments just what you thought?, Can. J. Philos. 26, 333–366 (1996)

    Article  Google Scholar 

  119. J.D. Norton: On thought experiments: Is there more to the argument?, Philos. Sci. 71, 1139–1151 (2004)

    Article  Google Scholar 

  120. R. Descartes: Discours de la méthode. In: Oeuvres de Descartes, Vol. 6, ed. by C. Adam, P. Tannery (J. Vrin, Paris 1996), first published in 1637

    Google Scholar 

  121. P. Humphreys: What are data about? In: Computer Simulations and the Changing Face of Experimentation, ed. by E. Arnold, J. Durán (Cambridge Scholars Publishing, Cambridge 2013)

    Google Scholar 

  122. M. Stöckler: On modeling and simulations as instruments for the study of complex systems. In: Science at Century’s End: Philosophical Questions on the Progress and Limits of Science, ed. by M. Carrier, G. Massey, L. Ruetsche (Univ. Pittsburgh Press, Pittsburgh 2000) pp. 355–373

    Google Scholar 

  123. P. Humphreys: Computational and conceptual emergence, Philos. Sci. 75(5), 584–594 (2008)

    Article  Google Scholar 

  124. P. Humphreys: The philosophical novelty of computer simulation methods, Synthese 169(3), 615–626 (2008)

    Article  MathSciNet  Google Scholar 

  125. A. Barberousse, M. Vorms: Computer simulations and empirical data. In: Computer Simulations and the Changing Face of Scientific Experimentation, ed. by J.M. Durán, E. Arnold (Cambridge Scholars Publishing, Newcastle upon Tyne 2013)

    Google Scholar 

  126. J.A. Fodor: Special sciences (or: The disunity of science as a working hypothesis), Synthese 28(2), 97–115 (1974)

    Article  Google Scholar 

  127. M.S. Morgan: Experiments without material intervention: Model experiments, virtual experiments and virtually experiments. In: The Philosophy of Scientific Experimentation, ed. by R. Hans (Univ. Pittsburgh Press, Pittsburgh 2003) pp. 216–235

    Google Scholar 

  128. C. Hempel: Aspects of Scientific Explanation and Other Essays in the Philosophy of Science (Free Press, New York 1965)

    Google Scholar 

  129. W. Salmon: Scientific Explanation and the Causal Structure of the World (Princeton Univ. Press, Princeton 1984)

    Google Scholar 

  130. W. Salmon: Causality without counterfactuals, Philos. Sci. 61, 297–312 (1994)

    Article  MathSciNet  Google Scholar 

  131. P. Railton: Probability, explanation, information, Synthese 48, 233–256 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  132. P. Kitcher: The Advancement of Science: Science Without Legend, Objectivity Without Illusions (Oxford Univ. Press, New York 1993)

    Google Scholar 

  133. T. Grüne-Yanoff, P. Weirich: The philosophy and epistemology of simulation: A review, Simul. Gaming 41(1), 20–50 (2010)

    Article  Google Scholar 

  134. A. Ilachinski: Cellular Automata: A Discrete Universe (World Scientific, Singapore 2001)

    Book  MATH  Google Scholar 

  135. E.F. Keller: Models, simulation and computer experiments. In: The Philosophy of Scientific Experimentation, ed. by H. Radder (Univ. Pittsburgh Press, Pittsburgh 2003) pp. 198–215

    Google Scholar 

  136. D. Dowling: Experimenting on theories, Sci. Context 12(2), 261–273 (1999)

    Article  Google Scholar 

  137. G. Piccinini: Computational explanation and mechanistic explanation of mind. In: Cartographies of the Mind, ed. by M. Marraffa, M. De Caro, F. Ferretti (Springer, Dordrecht 2007) pp. 23–36

    Chapter  Google Scholar 

  138. E. Arnold: What’s wrong with social simulations?, The Monist 97(3), 359–377 (2014)

    Article  Google Scholar 

  139. S. Ruphy: Limits to modeling: Balancing ambition and outcome in astrophysics and cosmology, Simul. Gaming 42(2), 177–194 (2011)

    Article  Google Scholar 

  140. B. Epstein, P. Forber: The perils of tweaking: How to use macrodata to set parameters in complex simulation models, Synthese 190(2), 203–218 (2012)

    Article  MathSciNet  Google Scholar 

  141. W. Bechtel, R.C. Richardson: Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research (MIT Press, Cambridge 1993)

    Google Scholar 

  142. H. Zwirn: Les Systèmes complexes (Odile Jacob, Paris 2006), in French

    Google Scholar 

  143. Y. Bar-Yam: Dynamics of Complex Systems (Westview, Boulder 1997)

    MATH  Google Scholar 

  144. R. Badii, A. Politi: Complexity: Hierarchical Structures and Scaling in Physics (Cambridge Univ. Press, Cambridge 1999)

    MATH  Google Scholar 

  145. D. Little: Varieties of Social Explanation: An Introduction to the Philosophy of Social Science (Westview, Boulder 1990)

    Google Scholar 

  146. H. Kincaid: Philosophical Foundations of the Social Sciences: Analyzing Controversies in Social Research (Cambridge Univ. Press, Cambridge 1996)

    Google Scholar 

  147. C. Hitchcock: Discussion: Salmon on explanatory relevance, Philos. Sci. 62, 304–320 (1995)

    Article  Google Scholar 

  148. C. Imbert: Relevance, not invariance, explanatoriness, not manipulability: Discussion of Woodward’s views on explanatory relevance, Philos. Sci. 80(5), 625–636 (2013)

    Article  Google Scholar 

  149. W.C. Salmon: Four Decades of Scientific Explanation (Univ. Pittsburgh Press, Pittsburgh 2006)

    Google Scholar 

  150. G. Schurz: Relevant deduction, Erkenntnis 35(1--3), 391–437 (1991)

    MathSciNet  Google Scholar 

  151. H.E. Kyburg: Comment, Philos. Sci. 32, 147–151 (1965)

    Article  Google Scholar 

  152. M. Scriven: Explanations, predictions, and laws. In: Scientific Explanation, Space, and Time, Vol. 3, ed. by H. Feigl, G. Maxwells (Univ. Minnesota Press, Minneapolis 1962) pp. 170–230

    Google Scholar 

  153. J. Woodward: Scientific explanation. In: The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Stanford Univ., Stanford 2014), http://plato.stanford.edu/archives/win2014/entries/scientific-explanation/

    Google Scholar 

  154. J. Woodward: Making Things Happen (Oxford Univ. Press, Oxford 2003)

    Google Scholar 

  155. S. Wolfram: A New Kind of Science (Wolfram Media, Champaign 2002)

    MATH  Google Scholar 

  156. H.W. de Regt, D. Dieks: A contextual approach to scientific understanding, Synthese 144(1), 137–170 (2005)

    Article  Google Scholar 

  157. R.P. Feynman, R.B. Leighton, M.L. Sands: The Feynman Lectures on Physics, Vol. 3 (Addison-Wesley, Reading 1963)

    MATH  Google Scholar 

  158. C. Hempel: Reasons and covering laws in historical explanation. In: The Philosophy of C.G. Hempel: Studies in Science, Explanation, and Rationality, ed. by J.H. Fetzler (Oxford Univ. Press, Oxford 2000), first published in 1963

    Google Scholar 

  159. J. Lenhard: Surprised by a nanowire: Simulation, control, and understanding, Philos. Sci. 73(5), 605–616 (2006)

    Article  Google Scholar 

  160. M. Bedau: Downward causation and the autonomy of weak emergence, Principia 6, 5–50 (2003)

    Google Scholar 

  161. P. Huneman: Determinism, predictability and open-ended evolution: Lessons from computational emergence, Synthese 185(2), 195–214 (2012)

    Article  MathSciNet  Google Scholar 

  162. C. Imbert: Why diachronically emergent properties must also be salient. In: World Views, Science, and Us: Philosophy and Complexity, ed. by C. Gershenson, D. Aerts, B. Edmonds (World Scientific, Singapore 2007) pp. 99–116

    Chapter  Google Scholar 

  163. H. Zwirn, J.P. Delahaye: Unpredictability and computational irreducibility. In: Irreducibility and Computational Equivalence, Emergence, Complexity and Computation, Vol. 2, ed. by H. Zenil (Springer, Berlin, Heidelberg 2013) pp. 273–295

    Chapter  Google Scholar 

  164. J. Kuorikoski: Simulation and the sense of understanding. In: Models, Simulations, and Representations, ed. by P. Humphreys, C. Imbert (Routledge, London 2012)

    Google Scholar 

  165. C.R. Shalizi, C. Moore: What Is a Macrostate? Subjective Observations and Objective Dynamics (2003) arxiv:cond-mat/0303625

    Google Scholar 

  166. N. Israeli, N. Goldenfeld: Computational irreducibility and the predictability of complex physical systems, Phys. Rev. Lett. 92(7), 074105 (2004)

    Article  Google Scholar 

  167. N. Goodman: Language of Arts (Hackett, Indianapolis 1976)

    Google Scholar 

  168. M. Vorms: Formats of representation in scientific theorizing. In: Models, Simulations, and Representations, (Routledge, London 2012) pp. 250–273

    Google Scholar 

  169. J. Jebeile: Explication et Compréhension Dans Les Sciences Empiriques. Les modèles Scientifiques et le Tournant Computationnel, Ph.D. Thesis (Université Paris, Paris 2013)

    Google Scholar 

  170. S. Bullock: Levins and the lure of artificial worlds, The Monist 97(3), 301–320 (2014)

    Article  Google Scholar 

  171. J. Lenhard: Autonomy and automation: Computational modeling, reduction, and explanation in quantum chemistry, The Monist 97(3), 339–358 (2014)

    Article  Google Scholar 

  172. K. Appel, W. Haken: Every planar map is four colorable. I. Discharging, Ill. J. Math. 21(3), 429–490 (1977)

    MathSciNet  MATH  Google Scholar 

  173. K. Appel, W. Haken, J. Koch: Every planar map is four colorable. II. Reducibility, Ill. J. Math. 21(3), 491–567 (1977)

    MathSciNet  MATH  Google Scholar 

  174. T. Tymoczko: New Directions in the Philosophy of Mathematics: An Anthology (Princeton Univ. Press, Princeton 1998)

    MATH  Google Scholar 

  175. I. Lakatos: Proofs and Refutations (Cambridge Univ. Press, Cambridge 1976)

    Book  MATH  Google Scholar 

  176. H. Putnam: What is mathematical truth? In: Mathematics, Matter and Method, Vol. 1, (Cambridge Univ. Press, Cambridge 1975) pp. 60–78

    Google Scholar 

  177. F. Guala: Models, simulations, and experiments. In: Model-Based Reasoning, ed. by L. Magnani, N.J. Nersessian (Springer, New York 2002) pp. 59–74

    Chapter  Google Scholar 

  178. M. Morrison: Models, measurement and computer simulation: The changing face of experimentation, Philos. Stud. 143(1), 33–57 (2009)

    Article  Google Scholar 

  179. R.N. Giere: Is computer simulation changing the face of experimentation?, Philos. Stud. 143(1), 59–62 (2009)

    Article  Google Scholar 

  180. D. Shapere: The concept of observation in science and philosophy, Philos. Sci. 49(4), 485–525 (1982)

    Article  Google Scholar 

  181. P. Humphreys: X-ray data and empirical content. Logic, methodology and philosophy of science, Proc. 14th Int. Congr. (Nancy), ed. by P. Schroeder-Heister, W. Hodges, G. Heinzmann, P.E. Bour (College Publications, London 2014) pp. 219–234

    Google Scholar 

  182. V. Israel-Jost: The impact of modern imaging techniques on the concept of observation: A philosophical analysis, Ph.D. Thesis (Université de Paris, Panthéon-Sorbonne 2011)

    Google Scholar 

  183. D. Resnik: Some recent challenges to openness and freedom in scientific publication. In: Ethics for Life Scientists, Vol. 5, (Springer, Dordrecht 2005) pp. 85–99

    Chapter  Google Scholar 

  184. M. Frické: Big data and its epistemology, J. Assoc. Inf. Sci. Technol. 66(4), 651–661 (2014)

    Article  Google Scholar 

  185. S. Leonelli: What difference does quantity make? On the epistemology of big data in biology, Big Data Soc. (2014), doi:10.1177/2053951714534395

  186. W.S. Parker: Franklin, Holmes, and the epistemology of computer simulation, Int. Stud. Philos. Sci. 22(2), 165–183 (2008)

    Article  Google Scholar 

  187. W.S. Parker: Computer simulation through an error-statistical lens, Synthese 163, 371–384 (2008)

    Article  MathSciNet  Google Scholar 

  188. D.G. Mayo: Error and the Growth of Experimental Knowledge (Univ. Chicago Press, Chicago 1996)

    Book  Google Scholar 

  189. H.M. Collins: Tacit and Explicit Knowledge (Univ. Chicago Press, Chicago 2010)

    Book  Google Scholar 

  190. L. Soler, E. Trizio, T. Nickles, W.C. Wimsatt: Characterizing the Robustness of Science: After the Practice Turn in Philosophy of Science (Springer, Dordrecht 2012)

    Book  Google Scholar 

  191. A. Gelfert: Scientific models, simulation, and the experimenter’s regress. In: Representation, Models and Simulations, ed. by P. Humphreys, C. Imbert (Routledge, London 2011) pp. 145–167

    Google Scholar 

  192. H.M. Collins: Changing Order: Replication and Induction in Scientific Practice (Sage, London 1985)

    Google Scholar 

  193. B. Godin, Y. Gingras: The experimenters’ regress: From skepticism to argumentation, Stud. Hist. Philos. Sci. Part A 33(1), 133–148 (2002)

    Article  Google Scholar 

  194. A. Franklin: How to avoid the experimenters regress, Stud. Hist. Philos. Sci. 25, 97–121 (1994)

    Article  MathSciNet  Google Scholar 

  195. E. Winsberg: Computer simulations in science. In: The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Stanford Univ., Stanford 2014), http://plato.stanford.edu/archives/fall2014/entries/simulations-science/

    Google Scholar 

  196. J.M. Durán: The use of the materiality argument in the literature for computer simulations. In: Computer Simulations and the Changing Face of Scientific Experimentation, ed. by J.M. Durán, E. Arnold (Cambridge Scholars, Newcastle upon Tyne 2013)

    Google Scholar 

  197. B. Mundy: On the general theory of meaningful representation, Synthese 67, 391–437 (1986)

    Article  MathSciNet  Google Scholar 

  198. O. Bueno: Empirical adequacy: A partial structures approach, Stud. Hist. Philos. Sci. 28, 585–610 (1997)

    Article  MathSciNet  Google Scholar 

  199. W.S. Parker: Does matter really matter? Computer simulations, experiments, and materiality, Synthese 169(3), 483–496 (2009)

    Article  Google Scholar 

  200. I. Peschard: Computer simulation as substitute for experimentation?. In: Simulations and Networks, ed. by S. Vaienti (Hermann, Paris) forthcoming http://philsci-archive.pitt.edu/9010/1/Is_simulation_an_epistemic__substitute.pdf

  201. E.C. Parke: Experiments, simulations, and epistemic privilege, Philos. Sci. 81(4), 516–536 (2014)

    Article  Google Scholar 

  202. M.S. Morgan: Experiments versus models: New phenomena, inference and surprise, J. Econ. Methodol. 12(2), 317–329 (2005)

    Article  MathSciNet  Google Scholar 

  203. S. Roush: The epistemic superiority of experiment to simulation, Proc. PSA 2014 Conf., Chicago, to be published

    Google Scholar 

  204. S.L. Peck: Simulation as experiment: A philosophical reassessment for biological modeling, Trends in Ecol. Evol. 19(10), 530–534 (2004)

    Article  Google Scholar 

  205. R. Harré: The materiality of instruments in a metaphysics for experiments. In: The Philosophy of Scientific Experimentation, ed. by H. Radder (Pittsburg Univ. Press, Pittsburg 2003) pp. 19–38

    Google Scholar 

  206. M.S. Morgan: Model experiments and models in experiments. In: Model-Based Reasoning: Science, Technology, Values, ed. by M. Lorenzo, N.J. Nersessian (Springer, New York 2001)

    Google Scholar 

  207. J.M. Durán: A brief overview of the philosophical study of computer simulations, Am. Philos. Assoc. Newslett. Philos. Comput. 13(1), 38–46 (2013)

    Google Scholar 

  208. T. Boyer-Kassem: Layers of models in computer simulations, Int. Stud. Philos. Sci. 28(4), 417–436 (2014)

    Article  MathSciNet  Google Scholar 

  209. R.I.G. Hughes: The Theoretical Practices of Physics: Philosophical Essays (Oxford Univ. Press, Oxford 2010)

    Google Scholar 

  210. O. Bueno: Computer simulations: An inferential conception, The Monist 97(3), 378–398 (2014)

    Article  Google Scholar 

  211. M. Weisberg: Simulation and Similarity: Using Models to Understand the World (Oxford Univ. Press, Oxford 2013)

    Book  Google Scholar 

  212. R. Batterman: The Devil in the Details, Asymptotic Reasoning in Explanation, Reduction, and Emergence (Oxford Univ. Press, Oxford 2002)

    MATH  Google Scholar 

  213. E. Winsberg: Science in the Age of Computer Simulation (Univ. Chicago Press, Chicago 2010)

    Book  Google Scholar 

  214. A.I. Janis: Can thought experiments fail? In: Thought Experiments in Science and Philosophy, ed. by T. Horowitz, G. Massey (Rowman Littlefield, Lanham 1991) pp. 113–118

    Google Scholar 

  215. J.R. Searle: The Construction of Social Reality (Free Press, London 1996)

    Google Scholar 

  216. G. Piccinini: Computation in physical systems. In: The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Fall 2012 Edition) http://plato.stanford.edu/archives/fall2012/entries/computation-physicalsystems/

  217. K. Zuse: The computing universe, Int. J. Theor. Phys. 21, 589–600 (1982)

    Article  Google Scholar 

  218. E. Fredkin: Digital mechanics: An informational process based on reversible universal cellular automata, Physica D 45, 1–3 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  219. R.N. Giere: How models are used to represent reality, Philos. Sci. 71, 742–752 (2004)

    Article  Google Scholar 

  220. U. Mäki: Models and the locus of their truth, Synthese 180(1), 47–63 (2011)

    Article  Google Scholar 

  221. R. Giere: An agent-based conception of models and scientific representation, Synthese 172(2), 269–281 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

I have tried to present a critical survey of the literature with the aim of clarifying discussions. I thank the editors for providing me the opportunity to write this article and for being so generous with space. I also thank T. Boyer-Kassem, J.M. Durán, E. Arnold, and specifically P. Humphreys for feedback or help concerning this review article. I am also grateful to A. Barberousse, J. P. Delahaye, J. Dubucs, R. El Skaf, R. Frigg, S. Hartmann, J. Jebeile, M. Morrison, M. Vorms, H. Zwirn for stimulating exchanges over the last couple of years about the issue of models and simulations and related questions. All remaining shortcomings are mine. Various valuable review articles, such as (J.M. Durán: A brief overview of the philosophical study of computer simulations, Am. Philos. Assoc. Newslett. Philos. Comput. 13(1), 38–46 (2013), W.S. Parker: Computer simulation, In: The Routledge Companion to Philosophy of Science, 2nd edn., ed. by S. Psillos, M. Curd (Routledge, London 2013)), have been recently written about the issue of computer simulations. (P. Humphreys: Computational science in Oxford bibliographies online, (2012) doi:10.1093/OBO/9780195396577-0100) presents and discusses important references and may be used as a short but insightful research guide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille Imbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Imbert, C. (2017). Computer Simulations and Computational Models in Science. In: Magnani, L., Bertolotti, T. (eds) Springer Handbook of Model-Based Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-30526-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30526-4_34

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30525-7

  • Online ISBN: 978-3-319-30526-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics