Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Computational scientific discovery is becoming increasingly important in many areas of science. This chapter reviews the application of computational methods in the formulation of scientific ideas, that is, in the characterization of phenomena and the generation of scientific explanations, in the form of hypotheses, theories, and models. After a discussion of the evolutionary and anthropological roots of scientific discovery, the nature of scientific discovery is considered, and an outline is given of the forms that scientific discovery can take: direct observational discovery, finding empirical rules, and discovery of theories. A discussion of the psychology of scientific discovery includes an assessment of the role of induction. Computational discovery methods in mathematics are then described. This is followed by a survey of methods and associated applications in computational scientific discovery, covering massive systematic search within a defined space; rule-based reasoning systems; classification, machine vision, and related techniques; data mining; finding networks; evolutionary computation; and automation of scientific experiments. We conclude with a discussion of the future of computational scientific discovery, with consideration of the extent to which scientific discovery will continue to require human input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AI:

artificial intelligence

AM:

Automated Mathematician

BN:

Bayesian network

DNA:

deoxyribonucleic acid

LT:

Logic Theorist

STM:

short term memory

References

  1. H.K. Versteeg, W. Malalasekera: An Introduction to Computational Fluid Dynamics: The Finite Volume Method (Pearson Education, Harlow 2007)

    Google Scholar 

  2. D.W. Heermann: Computer-Simulation Methods in Theoretical Physics (Springer, Berlin 1990)

    Book  MATH  Google Scholar 

  3. J. Holland, K. Holyoak, R. Nisbett, P. Thagard: Induction: Processes of Inference, Learning, and Discovery (MIT, Cambridge 1986)

    Google Scholar 

  4. D.W. Stephens: Change, regularity, and value in the evolution of animal learning, Behav. Ecol. 2, 77–89 (1991)

    Article  Google Scholar 

  5. S.M. Reader, K.N. Laland: Social intelligence, innovation, and enhanced brain size in primates, Proc. Nat. Acad. Sci. 99, 4436–4441 (2002)

    Article  Google Scholar 

  6. N.J. Emery, N.S. Clayton: The mentality of crows: Convergent evolution of intelligence in corvids and apes, Science 306, 1903–1907 (2004)

    Article  Google Scholar 

  7. A.M. Auersperg, B. Szabo, A.M. von Bayern, A. Kacelnik: Spontaneous innovation in tool manufacture and use in a Goffin’s cockatoo, Curr. Biol. 22, R903–R904 (2012)

    Article  Google Scholar 

  8. M.H. Christiansen, S. Kirby: Language evolution: Consensus and controversies, Trends Cogn. Sci. 7, 300–307 (2003)

    Article  Google Scholar 

  9. J. Diamond: Guns, Germs and Steel (Vintage, London 2005)

    Google Scholar 

  10. P. Curd: Presocratic philosophy. In: The Stanford Encyclopedia of Philosophy (Winter 2012 Edition), ed. by E.N Zalta (2012) http://plato.stanford.edu/archives/win2012/entries/presocratics/

  11. C. Shields: Aristotle. In: The Stanford Encyclopedia of Philosophy (Spring 2014 Edition), ed. by E.N. Zalta (2014) http://plato.stanford.edu/archives/spr2014/entries/aristotle/

  12. J.R. Platt: Strong inference, Science 146, 347–353 (1964)

    Article  Google Scholar 

  13. P.M.S. Blackett: Memories of Rutherford. In: Rutherford at Manchester, ed. by J.B. Birks (Heywood, London 1962) pp. 102–113

    Google Scholar 

  14. L.A. Geddes: Looking back how measuring electric current has improved through the ages, IEEE Potentials 15, 40–42 (1996)

    Article  Google Scholar 

  15. W.L. Bragg: The diffraction of short electromagnetic waves by a crystal, Proc. Camb. Philos. Soc. 17, 43–57 (1913)

    MATH  Google Scholar 

  16. L. Pauling, R.B. Corey, H.R. Branson: The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain, Proc. Nat. Acad. Sci. 37, 205–211 (1951)

    Article  Google Scholar 

  17. J.D. Watson, F.H. Crick: Molecular structure of nucleic acids, Nature 171, 737–738 (1953)

    Article  Google Scholar 

  18. D.B. Kell, S.G. Oliver: Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis driven science in the post genomic era, Bioessays 26, 99–105 (2004)

    Article  Google Scholar 

  19. P. Langley: The computational support of scientific discovery, Int. J. Human-Comput. Stud. 53, 393–410 (2000)

    Article  MATH  Google Scholar 

  20. P. Langley, H.A. Simon, G. Bradshaw, H.A. Simon, J.M. Zytkow: Scientific Discovery: Computational Explorations of the Creative Processes (MIT, Cambridge 1987)

    Google Scholar 

  21. A. Machado, F.J. Silva: Toward a richer view of the scientific method: The role of conceptual analysis, Am. Psychol. 62, 671–681 (2007)

    Article  Google Scholar 

  22. R. Greenler: Rainbows, Halos, and Glories (Cambridge Univ. Press, Cambridge 1980)

    Google Scholar 

  23. W.G. Rees, C.M. Roach, C.H.F. Glover: Inversion of atmospheric refraction data, JOSA A 8, 330–338 (1991)

    Article  Google Scholar 

  24. P.D. Sozou: Inversion of mirage data: An optimization approach, JOSA A 11, 125–134 (1994)

    Article  Google Scholar 

  25. M. Bertero, T.A. Poggio, V. Torre: Ill-posed problems in early vision, Proc. IEEE 76, 869–889 (1988)

    Article  Google Scholar 

  26. M.V. Afonso, J.M. Bioucas-Dias, M.A. Figueiredo: An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems, IEEE Trans. Image Process. 20, 681–695 (2011)

    Article  MathSciNet  Google Scholar 

  27. H.Y. Li, C.Y. Yang: A genetic algorithm for inverse radiation problems, Int. J. Heat Mass Transf. 40, 1545–1549 (1997)

    Article  MATH  Google Scholar 

  28. C.L. Karr, I. Yakushin, K. Nicolosi: Solving inverse initial-value, boundary-value problems via genetic algorithm, Eng. App. Artif. Intell. 13, 625–633 (2000)

    Article  Google Scholar 

  29. D.K. Karpouzos, F. Delay, K.L. Katsifarakis, G.D. Marsily: A multipopulation genetic algorithm to solve the inverse problem in hydrogeology, Water Resour. Res. 37, 2291–2302 (2001)

    Article  Google Scholar 

  30. D. Gillies: Artificial Intelligence and Scientific Method (Oxford Univ. Press, Oxford 1996)

    MATH  Google Scholar 

  31. F. Bacon: Novum Organum (Open Court, Chicago 1994), ed. by P. Urbach, J. Gibson, originally published in 1620

    MATH  Google Scholar 

  32. K.R. Popper: Conjectures and Refutations: The Growth of Scientific Knowledge (Routledge and Kegan Paul, London 1963)

    Google Scholar 

  33. K.R. Popper: The Logic of Scientific Discovery (Unwin Hyman, London 1990), 14th impression

    MATH  Google Scholar 

  34. D. Campbell: Blind variation and selective retention in creative thought as in other knowledge processes, Psychol. Rev. 67, 380–400 (1960)

    Article  Google Scholar 

  35. D. Simonton: Origins of Genius (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  36. D. Klahr, K. Dunbar: Dual space search during scientific reasoning, Cogn. Sci. 12, 1–48 (1988)

    Article  Google Scholar 

  37. K. Dunbar, J. Fugelsang: Scientific thinking and reasoning. In: The Cambridge Handbook of Thinking and Reasoning, ed. by K.J. Holyoak, R.G. Morrison (Cambridge Univ. Press, Cambridge 2005) pp. 705–725

    Google Scholar 

  38. Y. Qin, H.A. Simon: Laboratory replication of scientific discovery processes, Cogn. Sci. 14, 281–312 (1990)

    Article  Google Scholar 

  39. P. Langley, G. Bradshaw, H.A. Simon: BACON 5: The discovery of conservation laws, Proc. 7th Int. Jt. Conf. Artif. Intell., Br. Columbia (AAAI, Palo Alto 1981) pp. 121–126

    Google Scholar 

  40. D. Kulkarni, H.A. Simon: The processes of scientific discovery: The strategy of experimentation, Cogn. Sci. 12, 139–175 (1988)

    Article  Google Scholar 

  41. H.A. Krebs: The discovery of the ornithine cycle of urea synthesis, Biochem. Educ. 1, 19–23 (1973)

    Article  Google Scholar 

  42. M.A. Boden: Creativity and artificial intelligence, Artif. Intell. 103, 347–356 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. P. Thagard, K.J. Holyoak, G. Nelson, D. Gochfeld: Analog retrieval by constraint satisfaction, Artif. Intell. 46, 259–310 (1990)

    Article  MathSciNet  Google Scholar 

  44. E.P. Wigner: The unreasonable effectiveness of mathematics in the natural sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959, Commun. Pure Appl. Math. 13, 1–14 (1960)

    Article  Google Scholar 

  45. S. Colton: Computational discovery in pure mathematics. In: Computational Discovery of Scientific Knowledge, Lecture Notes in Computer Science, Vol. 4660, ed. by S. Džeroski, L. Todorovski (Springer, Berlin Heidelberg 2007) pp. 175–201

    Chapter  Google Scholar 

  46. S. Colton, A. Bundy, T. Walsh: On the notion of interestingness in automated mathematical discovery, Int. J. Human-Comput. Stud. 53, 351–375 (2000)

    Article  MATH  Google Scholar 

  47. C.E. Larson: A survey of research in automated mathematical conjecture-making, DIMACS Ser. Discrete Math. Theor. Comput. Sci. 69, 297–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Newell, J.C. Shaw, H.A. Simon: Elements of a theory of human problem solving, Psychol. Rev. 65, 151–166 (1958)

    Article  Google Scholar 

  49. A.N. Whitehead, B. Russell: Principia Mathematica, Vol. 1 (Cambridge Univ. Press, Cambridge 1910)

    MATH  Google Scholar 

  50. F. Gobet, P.C.R. Lane: Human problem solving: Beyond Newell et al.’s (1958) elements of a theory of human problem solving. In: Cognitive Psychology: Revisiting the Classic Studies, ed. by D. Groome, M.W. Eysenck (Sage, Thousand Oaks 2015) pp. 133–145

    Google Scholar 

  51. H. Wang: Toward mechanical mathematics. In: Automation of Reasoning: Classical Papers on Computational Logic 1957–1966, ed. by J. Siekmann, G. Wrightson (Springer, Berlin 1983) pp. 244–264

    Google Scholar 

  52. D.B. Lenat: AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search (Dept. Computer Science, Stanford Univ., Stanford 1976)

    Google Scholar 

  53. R. Davis, D.B. Lenat: Knowledge-Based Systems in Artificial Intelligence (McGraw-Hill, New York 1982)

    MATH  Google Scholar 

  54. G.D. Ritchie, F.K. Hanna: AM: A case study in AI methodology, Artif. Intell. 23, 249–268 (1984)

    Article  Google Scholar 

  55. D.B. Lenat, J.S. Brown: Why AM and EURISKO appear to work, Artif. Intell. 23, 269–294 (1984)

    Article  Google Scholar 

  56. S. Fajtlowicz: On conjectures of Graffiti, Ann. Discrete Math. 38, 113–118 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  57. E. Delavina: Bibliography on conjectures, methods and applications of Graffiti (2016), http://cms.dt.uh.edu/faculty/delavinae/research/wowref.htm

  58. R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, J. Lederberg: DENDRAL: A case study of the first expert system for scientific hypothesis formation, Artif. Intell. 61, 209–261 (1993)

    Article  Google Scholar 

  59. R.E. Valdes-Perez: Theory-driven discovery of reaction pathways in the MECHEM system, Proc. 10th Natl. Conf. Artif. Intell., San Jose (AAAI, Palo Alto 1992) pp. 63–69

    Google Scholar 

  60. J.M. Zytkow, H.A. Simon: Normative systems of discovery and logic of search, Synthese 74, 65–90 (1988)

    Article  Google Scholar 

  61. S. Muggleton, R.D. King, J.E. Sternberg: Protein secondary structure prediction using logic-based machine learning, Protein Eng. 5, 647–657 (1992)

    Article  Google Scholar 

  62. M.C. Storrie-Lombardi, O. Lahav, L. Sodre, L.J. Storrie-Lombardi: Morphological classification of galaxies by artificial neural networks, Mon. Not. R. Astron. Soc. 259, 8P–12P (1992)

    Article  Google Scholar 

  63. L. Shamir: Automatic morphological classification of galaxy images, Mon. Not. R. Astron. Soc. 399, 1367–1372 (2009)

    Article  Google Scholar 

  64. N. Tiffin, J.F. Kelso, A.R. Powell, H. Pan, V.B. Bajic, W.A. Hide: Integration of text-and data-mining using ontologies successfully selects disease gene candidates, Nucleic Acids Res. 33, 1544–1552 (2005)

    Article  Google Scholar 

  65. R.D. King, A. Srinivasan, L. Dehaspe: Warmr: A data mining tool for chemical data, J. Comput.-Aided Mol. Des. 15, 173–181 (2001)

    Article  Google Scholar 

  66. Z. Bar-Joseph, G.K. Gerber, T.I. Lee, N.J. Rinaldi, J.Y. Yoo, F. Robert, D.K. Gifford: Computational discovery of gene modules and regulatory networks, Nat. Biotechnol. 21, 1337–1342 (2003)

    Article  Google Scholar 

  67. P. Spirtes, C. Glymour: An algorithm for fast recovery of sparse causal graphs, Soc. Sci. Comput. Rev. 9, 62–72 (1991)

    Article  Google Scholar 

  68. S. Guindon, O. Gascuel: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Syst. Biol. 52, 696–704 (2003)

    Article  Google Scholar 

  69. E. Frias-Martinez, F. Gobet: Automatic generation of cognitive theories using genetic programming, Minds Mach. 17, 287–309 (2007)

    Article  Google Scholar 

  70. M. Schmidt, H. Lipson: Distilling free-form natural laws from experimental data, Science 324, 81–85 (2009)

    Article  Google Scholar 

  71. R.D. King, J. Rowland, S.G. Oliver, M. Young, W. Aubrey, E. Byrne, M.L. Kata, K. Karkham, P. Pir, L.N. Soldatova, A. Sparkes, K.E. Whelan, A. Care: The automation of science, Science 324, 85–89 (2009)

    Article  Google Scholar 

  72. B.G. Buchanan, E.A. Feigenbaum: DENDRAL and Meta-DENDRAL: Their applications dimension, Artif. Intell. 11, 5–24 (1978)

    Article  Google Scholar 

  73. N. Orlov, L. Shamir, T. Macura, J. Johnston, D.M. Eckley, I.G. Goldberg: WND-CHARM: Multi-purpose image classification using compound image transforms, Pattern Recognit. Lett. 29, 1684–1693 (2008)

    Article  Google Scholar 

  74. U. Fayyad, G. Piatetsky-Shapiro, P. Smyth: From data mining to knowledge discovery in databases, AI Magazine 17, 37 (1996)

    Google Scholar 

  75. X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, D. Steinberg: Top 10 algorithms in data mining, Knowl. Inf. Sys. 14, 1–37 (2008)

    Article  Google Scholar 

  76. L. Hirschman, J.C. Park, J. Tsujii, L. Wong, C.H. Wu: Accomplishments and challenges in literature data mining for biology, Bioinformatics 18, 1553–1561 (2002)

    Article  Google Scholar 

  77. C. Perez-Iratxeta, P. Bork, M.A. Andrade: Association of genes to genetically inherited diseases using data mining, Nat. Genet. 31, 316–319 (2002)

    Google Scholar 

  78. N.M. Ball, R.J. Brunner: Data mining and machine learning in astronomy, Int. J. Mod. Phys. D 19, 1049–1106 (2010)

    Article  MATH  Google Scholar 

  79. H. Kitano: Systems biology: A brief overview, Science 295, 1662–1664 (2002)

    Article  Google Scholar 

  80. M. Hecker, S. Lambeck, S. Toepfer, E. Van Someren, R. Guthke: Gene regulatory network inference: Data integration in dynamic models–a review, Biosys. 96, 86–103 (2009)

    Article  Google Scholar 

  81. V. Spirin, L.A. Mirny: Protein complexes and functional modules in molecular networks, Proc. Natl. Acad. Sci. 100, 12123–12128 (2003)

    Article  Google Scholar 

  82. R.E. Ulanowicz: Quantitative methods for ecological network analysis, Comput. Biol. Chem. 28, 321–339 (2004)

    Article  MATH  Google Scholar 

  83. P. Kavanagh, N. Newlands, V. Christensen, D. Pauly: Automated parameter optimization for ecopath ecosystem models, Ecolo. Model. 172, 141–149 (2004)

    Article  Google Scholar 

  84. S.P. Borgatti: Identifying sets of key players in a social network, Comput. Math. Organ. Theory 12, 21–34 (2006)

    Article  MATH  Google Scholar 

  85. Z. Ghahramani: An introduction to hidden Markov models and Bayesian networks, Int. J. Pattern Recog. Artif. Intell. 15, 9–42 (2001)

    Article  Google Scholar 

  86. D. Haughton, A. Kamis, P.A. Scholten: A review of three directed acyclic graphs software packages: MIM, tetrad, and WinMine, Am. Stat. 60, 272–286 (2006)

    Article  Google Scholar 

  87. D.M. Hausman, J. Woodward: Independence, invariance and the causal Markov condition, Br. J. Phil. Sci. 50, 521–583 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  88. C. Glymour: Learning, prediction and causal Bayes nets, Trends Cogn. Sci. 7, 43–48 (2003)

    Article  Google Scholar 

  89. N. Cartwright: Causation: One word, many things, Phil. Sci. 71, 805–820 (2004)

    Article  MathSciNet  Google Scholar 

  90. J.P. Huelsenbeck, F. Ronquist, R. Nielsen, J.P. Bollback: Bayesian inference of phylogeny and its impact on evolutionary biology, Science 294, 2310–2314 (2001)

    Article  Google Scholar 

  91. Z. Yang: PAML 4: Phylogenetic analysis by maximum likelihood, Mol. Biol. Evol. 24, 1586–1591 (2007)

    Article  Google Scholar 

  92. J. Koza: Genetic Programming: On the Programming of Computers by Means of Natural Selection, Vol. 1 (MIT, Cambridge Massachussetts 1992)

    MATH  Google Scholar 

  93. R. Poli, W. Langdon, N. McPhee: A field guide to genetic programming, http://www.gp-field-guide.org.uk (2008)

  94. P.C.R. Lane, P.D. Sozou, M. Addis, F. Gobet: Evolving process-based models from psychological data using genetic programming. In: AISB50: Selected Papers, ed. by M. Bishop, K. Devlin, Y. Erden, R. Kibble, S. McGregor, M. Majid al-Rifaie, A. Martin, M. Figueroa, S. Rainey (AISB, London 2015) pp. 144–149

    Google Scholar 

  95. L. Chao, J. Haxby, A. Martin: Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects, Nat. Neurosci. 2, 913–919 (1999)

    Article  Google Scholar 

  96. A. Sparkes, W. Aubrey, E. Byrne, A. Clare, M.N. Khan, M. Liakata, R.D. King: Towards robot scientists for autonomous scientific discovery, Autom. Exp. 2, 1 (2010)

    Article  Google Scholar 

  97. J.G. Bellingham, K. Rajan: Robotics in remote and hostile environments, Science 318, 1098–1102 (2007)

    Article  Google Scholar 

  98. I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, P. Corke: Data collection, storage, and retrieval with an underwater sensor network, Proc. 3rd Int. Conf. Embed. Networked Sens. Syst. (2005) pp. 154–165

    Chapter  Google Scholar 

  99. J. Schwendner, F. Kirchner: Space Robotics: An overview of challenges, applications and technologies, KI-Künstliche Intell. 28, 71–76 (2014)

    Article  Google Scholar 

  100. P. Giza: Automated discovery systems and scientific realism, Minds Mach. 12, 105–117 (2002)

    Article  MATH  Google Scholar 

  101. R. Penrose: The Emperor’s New Mind: Concerning Computers, Minds and the Laws of Physics (Oxford Univ. Press, Oxford 1989)

    MATH  Google Scholar 

  102. D.C. Dennett: Betting your life on an algorithm, Behav. Brain Sci. 13, 660–661 (1990)

    Article  Google Scholar 

  103. G. Gigerenzer: Strong AI and the problem of second order algorithms, Behav. Brain Sci. 13, 663–664 (1990)

    Article  Google Scholar 

  104. M. Addis, P.D. Sozou, P.C. Lane, F. Gobet: Computational scientific discovery and cognitive science theories, Proc. IACAP, ed. by V. Müller (Springer, Heidelberg 2016)

    Google Scholar 

  105. C. Glymour: The automation of discovery, Daedalus 133, 69–77 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Sozou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sozou, P.D., Lane, P.C., Addis, M., Gobet, F. (2017). Computational Scientific Discovery. In: Magnani, L., Bertolotti, T. (eds) Springer Handbook of Model-Based Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-30526-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30526-4_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30525-7

  • Online ISBN: 978-3-319-30526-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics