Skip to main content

Lung Mechanics

  • Chapter
  • First Online:
Respiratory Mechanics

Part of the book series: SpringerBriefs in Bioengineering ((BRIEFSBIOENG))

  • 1220 Accesses

Abstract

Recoil pressure in the saline-filled lung is a unique function of lung volume. This recoil is provided by forces in the tissues that form the macrostructure of the lung: the pleural membrane, the bronchial tree, and the inter-lobular membranes that connect the bronchial tree to the pleural membrane. In the air-filled lung, recoil pressure is a function of lung volume and the internal variable, surface tension, which depends on volume history. The additional recoil pressure of the air-filled lung is the result of the direct effect of surface tension and the indirect effect of inducing tension in the lines of connective tissue that form the free edges of the alveolar walls at the boundary of the lumen of the alveolar duct. Non-uniform deformations are analyzed using the methods of linear elasticity. These include the gravitational deformation of the lung and the local deformation of the parenchyma surrounding a constricted airway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salmon RB, Primiano FP, Saidel GM, Niewoehner DE. Human lung pressure-volume relationships: alveolar collapse and airway closure. J Appl Physiol. 1981;51:353–62.

    CAS  PubMed  Google Scholar 

  2. Rodarte JR, Noredin G, Miller C, Brusasco V, Pellegrino R. Lung elastic recoil during breathing at increased lung volume. J Appl Physiol. 1999;87:1491–5.

    CAS  PubMed  Google Scholar 

  3. Hajji MA, Wilson TA, Lai-Fook SJ. Improved measurements of shear modulus and pleural membrane tension of the lung. J Appl Physiol. 1979;47:175–81.

    CAS  PubMed  Google Scholar 

  4. Smith JC, Butler JP, Hoppin Jr FG. Contribution of tree structures to lung elastic recoil. J Appl Physiol. 1984;57:1422–9.

    CAS  PubMed  Google Scholar 

  5. Verbeken EK, Cauberghs M, Van de Woestijne KP. Membranous bronchioles and connective tissue network of normal and emphysematous lungs. J Appl Physiol. 1996;81:2468–80.

    CAS  PubMed  Google Scholar 

  6. Weibel ER. Morphometry of the human lung. New York: Academic; 1963.

    Book  Google Scholar 

  7. Bachofen H, Gehr P, Weibel ER. Alterations of mechanical properties and morphology in excised rabbit lungs rinsed with a detergent. J Appl Physiol. 1979;47:1002–10.

    CAS  PubMed  Google Scholar 

  8. Gil J, Bachofen H, Gehr P, Weibel ER. The alveolar volume-to-surface ratio in air- and saline-filled lungs fixed by vascular perfusion. J Appl Physiol. 1979;47:990–1001.

    CAS  PubMed  Google Scholar 

  9. Wilson TA, Bachofen H. A model for mechanical structure of the alveolar duct. J Appl Physiol. 1982;52:1064–70.

    CAS  PubMed  Google Scholar 

  10. Oldmixon EH, Butler JP, Hoppin Jr FG. Dihedral angles between alveolar septa. J Appl Physiol. 1988;64:299–307.

    CAS  PubMed  Google Scholar 

  11. Oldmixon EH, Hoppin Jr FG. Distribution of elastin and collagen in canine lung alveolar parenchyma. J Appl Physiol. 1989;67:1941–9.

    CAS  PubMed  Google Scholar 

  12. Pattle RE. Properties, function and origin of the alveolar lining layer. Nature. 1955;175:1125–7.

    Article  CAS  PubMed  Google Scholar 

  13. Clements JA. Surface tension of lung extracts. Proc Soc Exp Biol Med. 1957;95:170–2.

    Article  CAS  PubMed  Google Scholar 

  14. Schurch S. Surface tension at low lung volumes: dependence on time and alveolar size. Respir Physiol. 1982;48:339–55.

    Article  CAS  PubMed  Google Scholar 

  15. Schurch S, Goerke J, Clements JA. Direct determination of surface tension in the lung. Proc Natl Acad Sci U S A. 1978;75:3417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schurch S, Schurch D, Curstedt T, Robertson B. Surface activity of lipid extract surfactant in relation to film area compression and collapse. J Appl Physiol. 1994;77:974–86.

    CAS  PubMed  Google Scholar 

  17. Avery ME, Mead J. Surface properties in relation to atelectasis and hyaline membrane disease. Am J Dis Child. 1959;97:517–23.

    CAS  Google Scholar 

  18. Hoppin FG, Jildebrandt H. Mechanical properties of the lung. In: West JB, editor. Bioengineering aspects of the lung, vol. 3. New York: Dekker; 1977. p. 83–162.

    Google Scholar 

  19. Smith JC, Stamenovic D. Surface forces in lungs. I. Alveolar surface tension-lung volume relationship. J Appl Physiol. 1986;60:1341–50.

    CAS  PubMed  Google Scholar 

  20. Bachofen H. Lung tissue resistance and pulmonary hysteresis. J Appl Physiol. 1968;24:296–301.

    CAS  PubMed  Google Scholar 

  21. Bachofen H, Hildebrandt J. Area analysis of pressure-volume hysteresis in mammalian lungs. J Appl Physiol. 1971;30:493–7.

    CAS  PubMed  Google Scholar 

  22. Horie T, Hildebrandt J. Dynamic compliance, limit cycles, and static equilibria of excised cat lungs. J Appl Physiol. 1971;31:423–30.

    CAS  PubMed  Google Scholar 

  23. Suki B, Barabasi L, Lutchen K. Lung tissue viscoelasticity: a mathematical framework and its molecular basis. J Appl Physiol. 1994;76:2749–59.

    CAS  PubMed  Google Scholar 

  24. Glazier JB, Hughes JMB, Maloney JE, West JB. Vertical gradient of alveolar size in lungs of dogs frozen intact. J Appl Physiol. 1967;23:694–705.

    CAS  PubMed  Google Scholar 

  25. Hoffman EA. Effect of body orientation on regional lung expansion: a computed tomography approach. J Appl Physiol. 1985;59:468–80.

    CAS  PubMed  Google Scholar 

  26. Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, Prisk GK. Vertical gradient in regional lung density in the supine human lung: the slinky effect. J Appl Physiol. 2006;103:240–8.

    Article  Google Scholar 

  27. Millar AB, Denison DM. Vertical gradients of lung density in healthy supine men. Thorax. 1989;44:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Milic-Emili J, Henderson AM, Dolovich MB, Trop D, Kaneko K. Regional distribution of inspired gas in the lung. J Appl Physiol. 1966;21:749–59.

    CAS  PubMed  Google Scholar 

  29. Wiener-Kronish JP, Gropper MA, Lai-Fook SJ. Pleural liquid pressure in dogs using a rib capsule. J Appl Physiol. 1985;59:597–602.

    CAS  PubMed  Google Scholar 

  30. Lai-Fook SJ, Wilson TA, Hyatt RE, Rodarte JR. Elastic constants of inflated dog lobes. J Appl Physiol. 1976;40:508–13.

    CAS  PubMed  Google Scholar 

  31. Liu S, Margulies SS, Wilson TA. Deformation of the dog lung in the chest wall. J Appl Physiol. 1990;68:1979–87.

    CAS  PubMed  Google Scholar 

  32. Lai-Fook SJ, Beck KC, Southorn PA. Pleural liquid pressure measured by micropipettes in rabbits. J Appl Physiol. 1984;56:1633–9.

    CAS  PubMed  Google Scholar 

  33. Anthonison NR, Robertson PC, Roos WRD. Gravity-dependent sequential emptying of lung regions. J Appl Physiol. 1970;28:589–95.

    Google Scholar 

  34. Hubmayr RD, Walters BJ, Chevalier PA, Rodarte JR, Olson LE. Topographical distribution of regional lung volume in anesthetized dogs. J Appl Physiol. 1983;54:1048–56.

    Article  CAS  PubMed  Google Scholar 

  35. Marcucci C, Nyhan D, Simon BA. Distribution of pulmonary ventilation using Xe-enhanced computed tomography in prone and supine dogs. J Appl Physiol. 2000;90:421–30.

    Google Scholar 

  36. Mead J, Takashima T, Leith DE. Stress distribution in the lungs: a model of pulmonary elasticity. J Appl Physiol. 1970;28:596–608.

    CAS  PubMed  Google Scholar 

  37. Wilson TA. A continuum analysis of a two-dimensional mechanical model of the lung parenchyma. J Appl Physiol. 1972;33:472–8.

    CAS  PubMed  Google Scholar 

  38. Stamenovic D. A model of foam elasticity based upon the laws of Plateau. J Colloid Interface Sci. 1991;145:255–9.

    Article  CAS  Google Scholar 

  39. Stamenovic D. Micromechanical foundation of pulmonary elasticity. Physiol Rev. 1991;70:1117–34.

    Google Scholar 

  40. Lei M, Ghezzo H, Chen MF, Eidelman DH. Airway smooth muscle orientation in intraparenchymal airways. J Appl Physiol. 1997;82:70–7.

    CAS  PubMed  Google Scholar 

  41. Stephens NL, Kroeger E, Mehta JA. Force-velocity characteristics of respiratory airway smooth muscle. J Appl Physiol. 1969;26:685–9.

    CAS  PubMed  Google Scholar 

  42. Okazawa M, Pare PD, Lambert RK. Compliance of peripheral airways deduced from morphometry. J Appl Physiol. 2000;89:2373–81.

    CAS  PubMed  Google Scholar 

  43. Gunst SJ, Stropp JQ. Pressure-volume curves and length-stress relationships in canine bronchi in vitro. J Appl Physiol. 1988;64:2522–31.

    CAS  PubMed  Google Scholar 

  44. Lai-Fook SJ. A continuum mechanics analysis of pulmonary vascular interdependence in isolated dog lobes. J Appl Physiol. 1979;46:419–29.

    CAS  PubMed  Google Scholar 

  45. Gunst SJ, Warner DO, Wilson TA, Hyatt RE. Parenchymal interdependence and airway response to methacholine in excised dog lobes. J Appl Physiol. 1988;65:2490–7.

    CAS  PubMed  Google Scholar 

  46. Anafi RC, Wilson TA. Airway stability and heterogeneity in constricted lungs. J Appl Physiol. 2001;91:1185–92.

    CAS  PubMed  Google Scholar 

  47. West JB, Matthews FL. Stresses, strains, and surface pressures in the lung caused by its weight. J Appl Physiol. 1972;32:32–345.

    Google Scholar 

  48. Lum H, Mitzner W. A species comparison of alveolar size and surface forces. J Appl Physiol. 1987;62:1865–71.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix

Appendix

The fundamental equation of the model is Eq. (1.2).

$$ {P}_{\gamma }=\frac{2}{3}\cdot \frac{\gamma \cdot S}{V_L}+\frac{1}{3}\cdot \frac{\tau \cdot L}{\left({V}_L+{V}_{ti}\right)} $$
(1.4)

Surface area increases with increasing V L and decreases with increasing L. Thus, S is a function of these two variables.

$$ S=S\left({V}_L,\;L\right) $$
(1.5)

This function is subject to two conditions. The first is the condition of internal equilibrium. At equilibrium, the internal stored energy of a structure is minimum, and the change of internal stored energy for a virtual displacement of the system is zero. In this case, the internal energy is the sum of the surface energy and the stored energy in the cables, and the equilibrium condition for a virtual change in L is the following.

$$ \gamma \cdot \frac{\partial S}{\partial L}+\tau =0 $$
(1.6)

Equation (1.6) is a generalized form of the equilibrium between the outward pull of surface tension and the inward Laplace force exerted by the cable. The second condition is the equality between the pressure -volume work done by lung inflation and the increase in the stored energy in the structure.

$$ {P}_{\gamma }=\gamma \cdot \frac{\partial S}{\partial {V}_L} $$
(1.7)

Substituting from Eqs. (1.6 and 1.7) into Eq. (1.4) for τ and P γ yields the following partial differential equation for S.

$$ \frac{\partial S}{\partial {V}_L}-\frac{2}{3}\frac{S}{V_L}+\frac{1}{3}\frac{L}{\left({V}_L+{V}_{ti}\right)}\cdot \frac{\partial S}{\partial L}=0 $$
(1.8)

The general solution to this equation is the following, where F is an arbitrary function of its argument x.

$$ S={V}_L^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\cdot F\left[\frac{L}{{\left({V}_L+{V}_{ti}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}\right] $$
(1.9)

Here, we take \( F={C}_1\left[1-{C}_2{x}^2\right] \), and S is the following.

$$ S={C}_1\cdot {V}_L^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\cdot \left[1-{C}_2\cdot \frac{L^2}{{\left({V}_L+{V}_{ti}\right)}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}\right] $$
(1.10)

The first term in Eq. (1.10) describes the relation between surface area and volume for a volume change in which the geometry of the parenchyma remains similar. The second describes the deficit in surface area because of the volume occupied by the lumen of the duct. With this expression for S, Eq. (1.6) is the following.

$$ 2{c}_1{c}_2\frac{\gamma \cdot {V}_L^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\cdot L}{{\left({V}_L+{V}_{ti}\right)}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}=\tau $$
(1.11)

Finally, the length-tension relation for the cables is given by the following empirical equation, where L 0 is the resting length of the cable.

$$ \tau ={C}_3\left(\raisebox{1ex}{$L$}\!\left/ \!\raisebox{-1ex}{${L}_O$}\right.-1\right)\cdot exp\left[{C}_4{\left(\raisebox{1ex}{$L$}\!\left/ \!\raisebox{-1ex}{${L}_O$}\right.-1\right)}^2\right] $$
(1.12)

The parameter L 0 can be absorbed into the parameters of the equations, Eqs. (1.4, 1.10, 1.11 and 1.12), by introducing the following normalized variables: \( v=V/{V}_o \), \( s=S/{V}_0 \), \( t={L}_0\cdot \tau /{V}_0 \), and \( l=L/{L}_0 \), where the reference volume, V 0, is taken as TLC. In terms of these variables, the governing equations, Eqs. (1.4, 1.10, 1.11 and 1.12), are the following.

$$ {P}_{\gamma }=\frac{2}{3}\frac{\gamma \cdot s}{v_L}+\frac{1}{3}\frac{t\cdot l}{\left(v+{v}_{ti}\right)} $$
(1.13)
$$ s={c}_1{v}_L^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\left[1-{c}_2\frac{l^2}{{\left({v}_L+{v}_{ti}\right)}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}\right] $$
(1.14)
$$ 2{c}_1{c}_2\frac{\gamma \cdot {v}_L^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}\cdot l}{{\left({v}_L+{v}_{ti}\right)}^{\raisebox{1ex}{$2$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}=t $$
(1.15)
$$ t={c}_3\left(l-1\right)\cdot \exp \left[{c}_4{\left(l-1\right)}^2\right] $$
(1.16)

For given values of γ and v L , Eqs. (1.13–1.16) can be solved for the values of the remaining variables, l, t, s, and P γ . To follow a volume history, starting from given values of γ and v L , the equation governing the evolution of γ is added.

$$ s\cdot \frac{\partial \gamma }{\partial s}=200\kern0.5em \mathrm{dyn}/\mathrm{cm} $$
(1.17)

The parameter c 1 in these equations has units of \( {\mathrm{cm}}^{-1} \); its value is inversely proportional to the diameter of the alveolus. c 2 is dimensionless; it describes the fraction of the volume of the duct that is subtended by the lumen. The parameter c 3 has units of pressure; it sets the magnitude of the second term in Eq. (1.13), the pressure provided by the cables. c 4 is dimensionless; it describes the nonlinearity of the length-tension curve of the cables.

The following values of the parameters were assigned.

$$ {c}_1=400\;{\mathrm{c}\mathrm{m}}^{-1}\kern1em {c}_2=0.3\kern1em {\mathrm{c}}_3=16\;\mathrm{cm}\kern0.5em {\mathrm{H}}_2\mathrm{O} $$
$$ \begin{array}{ll}{c}_4=4& {v}_{ti}=0.12\end{array} $$

The equations were solved for volume trajectories like those shown in Fig. 1.1. The outer inflation curve begins at \( {v}_L=0.22 \), \( \gamma =2\;\mathrm{dyn}/\mathrm{cm} \), and follows the variables as v L increases to the value at which \( \gamma =28\;\mathrm{dyn}/\mathrm{cm} \). It continues, holding γ constant and ignoring Eq. (1.17), to \( {v}_L=1 \). The deflation limb follows the variables to the value of v L at which \( \gamma =2\;\mathrm{dyn}/\mathrm{cm} \), and continues, holding γ constant, down to \( {v}_L=0.2 \). Inflation limbs starting at \( {v}_L=0.35 \) and \( {v}_L=0.5 \) and \( \gamma =2\;\mathrm{dyn}/\mathrm{cm} \) and going to the values of v L at which \( \gamma =28\;\mathrm{dyn}/\mathrm{cm} \) were also calculated. The predicted values of P tp and S for these trajectories are shown in Fig. 1.4.

It is interesting to note that the values of γ and P tp are the same for mammals of all sizes, but that alveolar diameter varies over a range of a factor of 4 with diameter roughly correlated with animal mass [48]. A larger value of c 1 and a smaller value of c 3 would be used to represent a species with smaller alveolar diameter, and the first term in Eq. (1.13) would be relatively bigger than the second.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wilson, T.A. (2016). Lung Mechanics. In: Respiratory Mechanics. SpringerBriefs in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30508-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30508-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30507-3

  • Online ISBN: 978-3-319-30508-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics