Skip to main content

A Scalable Dataflow Accelerator for Real Time Onboard Hyperspectral Image Classification

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9625))

Abstract

Real-time hyperspectral image classification is a necessary primitive in many remotely sensed image analysis applications. Previous work has shown that Support Vector Machines (SVMs) can achieve high classification accuracy, but unfortunately it is very computationally expensive. This paper presents a scalable dataflow accelerator on FPGA for real-time SVM classification of hyperspectral images.To address data dependencies, we adapt multi-class classifier based on Hamming distance. The architecture is scalable to high problem dimensionality and available hardware resources. Implementation results show that the FPGA design achieves speedups of 26x, 1335x, 66x and 14x compared with implementations on ZYNQ, ARM, DSP and Xeon processors. Moreover, one to two orders of magnitude reduction in power consumption is achieved for the AVRIS hyperspectral image datasets.

This work was partially supported by the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.201615) and China Scholarship Council.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The source code can be found from http://www.esat.kuleuven.be/sista/lssvmlab/.

References

  1. Bioucas-Dias, J.M., et al.: Hyperspectral remote sensing data analysis and future challenges. IEEE Geosci. Remote Sens. Mag. 6, 6–36 (2013)

    Article  Google Scholar 

  2. Cadambi, S., Igor, D., et al.: A massively parallel FPGA-based coprocessor for support vector machines. In: Proceedings - IEEE Symposium on Field Programmable Custom Computing Machines, FCCM 2009, pp. 115–122 (2009)

    Google Scholar 

  3. Gustavo, C., Davis, T., et al.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Sig. Process. Mag. 31(1), 45–54 (2014)

    Article  Google Scholar 

  4. Irick, K.M., et al.: A hardware efficient support vector machine architecture for FPGA. In: Proceedings of the 16th IEEE Symposium on Field-Programmable Custom Computing Machines, FCCM 2008, pp. 304–305 (2008)

    Google Scholar 

  5. Khodadadzadeh, M., et al.: A new framework for hyperspectral image classification using multiple spectral and spatial features. In: IEEE Geoscience and Remote Sensing Symposium, pp. 4628–4631 (2014)

    Google Scholar 

  6. Kyrkou, C., Theocharides, T.: SCoPE: towards a systolic array for SVM object detection. IEEE Embed. Syst. Lett. 1(2), 46–49 (2009)

    Article  Google Scholar 

  7. Liu, Y., et al.: Hyperspectral classification via deep networks and superpixel segmentation. Int. J. Remote Sens. 36(13), 3459–3482 (2015)

    Article  Google Scholar 

  8. Lopez, S., et al.: The promise of reconfigurable computing for hyperspectral imaging onboard systems: a review and trends. Proc. IEEE 101(3), 698–722 (2013)

    Article  Google Scholar 

  9. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  10. Montenegro, S., et al.: Hyperspectral monitoring data processing, pp. 1–4 (2003). ISBN 3-89685-569-7

    Google Scholar 

  11. Papadonikolakis, M., Bouganis, C.S.: Novel cascade FPGA accelerator for support vector machines classification. IEEE Trans. Neural Netw. Learn. Syst. 23(7), 1040–1052 (2012)

    Article  Google Scholar 

  12. Papadonikolakis, M., Bouganis, C.S.: A heterogeneous FPGA architecture for support vector machine training. In: 18th IEEE Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 6–9 (2010)

    Google Scholar 

  13. Sami, Q., et al.: Neural network based adaboosting approach for hyperspectral data classification. In: International Conference on Computer Science and Network Technolgoy, pp. 241–245 (2011)

    Google Scholar 

  14. Christos, K., et al.: Embedded hardware-efficient real-time classification with cascade support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 26(1), 99–112 (2016)

    Google Scholar 

  15. Xue, Z., et al.: Harmonic analysis for hyperspectral image classification integrated with PSO optimized SVM. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(6), 2131–2146 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, S., Niu, X., Ma, N., Luk, W., Leong, P., Peng, Y. (2016). A Scalable Dataflow Accelerator for Real Time Onboard Hyperspectral Image Classification. In: Bonato, V., Bouganis, C., Gorgon, M. (eds) Applied Reconfigurable Computing. ARC 2016. Lecture Notes in Computer Science(), vol 9625. Springer, Cham. https://doi.org/10.1007/978-3-319-30481-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30481-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30480-9

  • Online ISBN: 978-3-319-30481-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics