Skip to main content

Uniaxial Compressive Strength of Some Un-calcined Red Mud Mortars: Geotechnical Implications

  • Chapter
  • First Online:
Geobiotechnological Solutions to Anthropogenic Disturbances

Part of the book series: Environmental Earth Sciences ((EESCI))

  • 318 Accesses

Abstract

From an ecological standpoint, the most challenging world problem in aluminium production is the creation of vast quantities of insoluble bauxite residue (RM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altindag R, Guney A (2010) Predicting the relationships between brittleness and mechanical properties (UCS, TS and SH) of rocks. Sci Res Essays 5(16):2107–2118

    Google Scholar 

  • Amadei B (2015) Principles and procedure of Brazilian Test. CVEN 5768 -Lecture Notes 8. www.ejge.com/2013/Ppr2013.168clr.pdf. Accessed 5 March 2016

  • Amritphale SS, Patel M (1987) Utilization of red mud, fly ash for manufacturing bricks with pyrophyllite. Silic Industriels 52(3–4):31–35

    Google Scholar 

  • ASTM (1989) American Society for Testing and Materials, vol 04–08

    Google Scholar 

  • ASTM D4318 (2014) ebookdig.biz/ebook/q/pdf/astm-d-4318.html. Accessed 28 Feb 2016

    Google Scholar 

  • Brown ET (1981) Rock characterization, testing and monitoring. In: Brown ET (ed) International society for rock mechanics suggested methods. Pergamon Press, Oxford, pp 119–121

    Google Scholar 

  • Browner RE (1995) The use of bauxite waste mud in the treatment of gold ores. Hydrometallurgy, 37(3):339–348, ISSN: 0304-386X

    Google Scholar 

  • Buraev MI, Kushnir LI (1986) Facing tiles obtained from hydromica clays and red mud. Kompleksn Ispol’z Miner Syr’ya 7(1986):66–69

    Google Scholar 

  • Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int J Rock Mech Min Sci Geomech Abstr 27:495–503

    Article  Google Scholar 

  • Dass A, Malhotra SK (1990) Lime-stabilized red mud bricks. Mater Struct 23(4):252–255

    Google Scholar 

  • Di San Filippo A (1980) Riutilizzo del fango rosso. Rendiconti del seminario della Facolt`a di Scienze dell’Universit`a di Cagliari, vol L, No. 3–4, Cagliari, Italy

    Google Scholar 

  • Dimas DD, Giannopoulou IP, Panias D (2009) Utilization of alumina red mud for synthesis of inorganic polymeric materials. Miner Process Extr Metall Rev 30(3):211–239

    Article  CAS  Google Scholar 

  • Din F, Rafiq M (1997) Correlation between compressive strength and tensile strength/ index strength of some rocks of north- west frontier province (limestone and granite). Geol Bull Univ Peshawar 30:183

    Google Scholar 

  • Farah R (2011) Correlations between index properties and unconfined compressive strength of weathered Ocala limestone. UNF Theses and Dissertations. Paper 142

    Google Scholar 

  • Franklin JA, Dusseault MB (1989) Rock engineering. McGraw Hill, USA

    Google Scholar 

  • Geotechdata (2008) Geotechdata.info—updated 20.12.2014 ASTM Standard Test Method D3967-81 www.geotechdata.info/geotest/brazilian-test.html. Accessed 2 Feb 2016

  • Gokhale KVJK (1960) Experiments in engineering geology. Tata McGraw-Hill, New Delhi, pp 23–32, 47–49

    Google Scholar 

  • Gordon JN, Pinnock WR, Moore MM (1996) A preliminary investigation of strength development in Jamaican red mud composites. Cement Concr Compos 18(1996):371–379

    Article  CAS  Google Scholar 

  • Gromicko B, Gromicko N (2016) Efflorescence for Inspectors. InterNACHI. www.nachi.org/efflorescence. Accessed 24 March 2016

  • Harris MA (2008) Structural improvement of age-hardened gypsum-treated bauxite red mud waste using readily decomposable phyto-organics. Environ Geol 56:1517–1522. doi:10.1007/s00254-008-1249-5

    Google Scholar 

  • Kehagi F (2008) An innovative geotechnical application of bauxite residue. Electron J Geotechnical Eng 01/2008; 13 www.researchgate.net/publication/242296762_An_Innovative. Accessed 28 Feb 2016

  • Khattab S, Othman H (2013) Durability and strength of limestone used in building. Al Rafidain Engineering 21(3)

    Google Scholar 

  • Klein M (1998) German patent, 3633413, chemical abstracts 108, 191683

    Google Scholar 

  • Kohno K, Sugimoto A, Kashiwai T (1998) High-strength concrete containing finely ground silica and red mud. Semento Gijutsu Nenpo 42:136 (1998); Chemical Abstracts 111: 083124 (1998)

    Google Scholar 

  • Liu W, Yang J, Xiao B (2009) Application of Bayer red mud for iron recovery and building material production from aluminosilicate residues. J Hazard Mater 161:474–478. ISSN 03043894

    Google Scholar 

  • Liu Y, Naidu R, Ming M (2011) Red mud as an amendment for pollutants in solid and liquid phases. Geoderma 163(1–2):1–12, ISSN 0016-7061

    Google Scholar 

  • Lombi E, Zhao FJ, Zhang G, Sun B et al (2002) In situ fixation of metals in soils using bauxite residue: chemical assessment. Environ Pollut 118(3):435–443, ISSN 0269-7491

    Google Scholar 

  • Lombi E, Hamon RE, McGrath SP, McLaughlin MJ (2003) Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using istopic techniques. Environ Sci Technol 37(5):979–984, ISSN 0013-936X

    Google Scholar 

  • Maddocks G, Lin C, McConchie D (2004). Effects of Bauxsolâ„¢ and biosolids on soil conditions of acid-generating mine spoil for plant growth. Environ Pollut 127(2):157–167, ISSN 0269-7491

    Google Scholar 

  • Maddocks G, Reichelt-Brushett A, McConchie D, Vangronsveld J (2005) Bioaccumulation of metals in Eisenia fetida after exposure to a metal-loaded bauxsolâ„¢ reagent. Environ Toxicol Chem 24(3):554–563, ISSN 1552-8618

    Google Scholar 

  • Majumdar AJ, Singh B, Edmonds RN (1990) Hydration of mixtures of cement aluminous cement and granulated blast furnace slag. Cem Concr Res 20(2):197–208

    Article  CAS  Google Scholar 

  • McCarthy GJ, Hassett DJ, Bender JA (1992) Synthesis, crystal chemistry and stability of ettringite, a material with potential applications in hazardous waste immobilization. Mater Res Soc Symp Proc 245:129–140

    Article  CAS  Google Scholar 

  • Merlini M, Artioli G, Cerulli T, Cella F, Bravo A (2008) Tricalcium aluminate hydration in additivated systems. A crystallographic study by SR-XRPD. Cem Concr Res (Elsevier) 38(4):477–486. doi:10.1016/j.cemconres.2007.11.011

    Article  CAS  Google Scholar 

  • Muller CJ (2005) Pozzolanic activity of natural clay minerals with respect to environmental geotechnics. PhD dissertation. ETH No. 16299, dissertation submitted to the Swiss Federal Institute of Technology Zurich

    Google Scholar 

  • Nazir R, Momeni E, Armaghani DJ, Amin MFM (2013) Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Edge 18(2013): 1737–1746 (Bund. I)

    Google Scholar 

  • Nobst P, Stark J (2003) Investigations on the influence of cement type on thaumasite formation. Cement Concr. Compos 25(8):899–906. doi:10.1016/S0958-9465(03)00118-5

    Google Scholar 

  • O’Callaghan WB, McDonald SC, Richards DM, Reid RE (1998) Development of a topsoil-free vegetative cover on a former red mud disposal site. Alcan Jamaica Rehabilitaion Project Paper

    Google Scholar 

  • Paramguru RK, Rath PC, Misra VN (2005) Trends in red mud utilization—a review. Mineral Process Extr Metall Rev 26(1), ISSN 0371-9553

    Google Scholar 

  • Pinnock W, Gordon JN (1992) Assessment of strength development in bayer process residues. Cem Concr Compos 18(6):71–379

    Google Scholar 

  • Pratt KC, Christoverson V (1982). Hydrogenation of a model hydrogen-donor system using activated red mud catalyst. Fuel 61(5):460–462, ISSN 0016-2361

    Google Scholar 

  • Red mud project (2011) http://www.redmud.org/home.html. Accessed 28 Feb 2016

  • Ribeiro DV, Labrincha JA, Morelli MR (2010) Use of red mud as addition for Portland cement mortars. J Mater Sci Eng 4(8) (Serial No.33), ISSN 1934-8959, USA

    Google Scholar 

  • Romana M, Vasarhelyi B (2006) A discussion on the decrease of unconfined compressive strength between saturated and dry rock samples. http://www.google.com

  • Schwarz M, Lalík V (2012) Possibilities of exploitation of bauxite tailing from alumina production, recent researches in metallurgical engineering—from extraction to forming. Dr Nusheh M (Ed.), ISBN: 978-953-51-0356-1, InTech, Available from: http://www.intechopen.com/books/recentresearches

  • Sglavo VM, Campostrini R, Maurina S, Carturan G et al (2000) J Eur Ceram Soc 20(3):235–244, ISSN 0955-2219

    Google Scholar 

  • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22

    Article  CAS  Google Scholar 

  • Sheorey PR (1997) Empirical Rock Failure Criteria. Rotterdam: A.A. Balkema, 176p.

    Google Scholar 

  • Singh IB, Singh DR (2002) Cr(VI) removal in acidic aqueous solution using iron bearing industrial solid. Environ Technol 23(1):85–95, ISSN 0959-3330

    Google Scholar 

  • Singh AP, Singh PC Singh VN (1993) Cyclohexanethiol separation from kerosene oil by red mud. J Chem Technol Biotechnol 56(2):167–174, ISSN 0268-2575

    Google Scholar 

  • Singh M, Upadhayay SN, Prasad PM (1996) Preparation of special cements from red mud. Waste Manage 16(8):665–670, ISSN 0956-053X

    Google Scholar 

  • Snars K, Gilkes RJ (2009). Evaluation of bauxite residues (red muds) of different origins for environmental applications. Appl Clay Sci 46(1):13–20, ISSN 0169-1317

    Google Scholar 

  • Stillborg B (1986) Professional users handbook for rock bolting. Transtech publication, Germany 144 pp

    Google Scholar 

  • Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P (2004) Red mud addition in the raw meal for the production of Portland cement clinker. J Hazard Mater 116(1–2):103–110, ISSN 0304-3894

    Google Scholar 

  • Woodbridge ME (1999) Use of soft limestone for road-base construction in Belize. In: Seventh International Conference on Low-Volume Roads, Baton Rouge, Louisiana, USA. 23–26 May 1999. Department for International Development. Transport Research Laboratory, Crowthorne Berkshire RG45 6AU, United Kingdom. PA3450/99

    Google Scholar 

  • Yalçin N, Sevinç V (2000) Utilization of bauxite waste in ceramic glass. Ceramics Int 26(5):485–493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harris, M.A. (2016). Uniaxial Compressive Strength of Some Un-calcined Red Mud Mortars: Geotechnical Implications. In: Geobiotechnological Solutions to Anthropogenic Disturbances. Environmental Earth Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-30465-6_6

Download citation

Publish with us

Policies and ethics