Skip to main content

Material Properties and System Function Determination

  • Chapter
  • First Online:
Fundamentals of Ultrasonic Nondestructive Evaluation

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

  • 2697 Accesses

Abstract

The models of wave propagation described in the previous Chapters have all treated the underlying fluids and/or solids as perfect, non-attenuating media. Real materials, however, do exhibit an attenuation that must be accounted for in any complete description of an ultrasonic measurement system. Since the processes that generate material attenuation are generally quite complex, we will not attempt to model those processes in detail from a fundamental standpoint. Instead we will use a simple phenomenological 1-D attenuation model that is coupled with detailed experimental measurements in an explicitly modeled calibration setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.M. Ristic, Principles of Acoustic Devices (Wiley, New York, 1983)

    Google Scholar 

  2. G.S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing (Prentice Hall, Englewood Cliffs, 2007)

    Google Scholar 

  3. L.W. Schmerr, S.-J. Song, Ultrasonic Nondestructive Evaluation Systems—Models and Measurements (Springer, New York, 2007)

    Google Scholar 

  4. J.M.M. Pinkerton, A pulse method for the measurement of ultrasonic absorption in liquids: results for water. Nature 160, 128–129 (1947)

    Article  Google Scholar 

  5. D.W. Fitting, L. Adler, Ultrasonic Spectral Analysis for Nondestructive Evaluation (Plenum Press, New York, 1981)

    Book  Google Scholar 

  6. A.B. Bhatia, Ultrasonic Absorption (Dover, New York, 1967)

    Google Scholar 

  7. F.E. Stanke, G.S. Kino, A unified theory for elastic wave propagation in polycrystalline materials. J. Acoust. Soc. Am. 75, 665–681 (1984)

    Article  Google Scholar 

  8. S. Ahmed, R.B. Thompson, Attenuation and dispersion of ultrasonic waves in rolled aluminum, in Review of Progress in Quantitative Nondestructive Evaluation, ed. by D.O. Thompson, D.E. Chimenti (New York, Plenum Press, 1998), pp. 1649–1655

    Chapter  Google Scholar 

  9. A.I. Beltzer, N. Brauner, Shear waves in polycrystalline media and modifications of the Keller approximation. Int. J. Solids Struct. 23, 201–209 (1987)

    Article  Google Scholar 

  10. M. Greenspan, Piston radiator: some extensions of the theory. J. Acoust. Soc. Am. 65, 608–621 (1979)

    Article  Google Scholar 

  11. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980)

    Google Scholar 

  12. P.H. Rogers, A.L. Van Buren, An exact expression for the Lommel diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)

    Article  Google Scholar 

  13. A.S. Khimunin, Numerical calculation of the diffraction corrections for the precise measurement of ultrasonic absorption. Acustica 27, 173–181 (1972)

    Google Scholar 

  14. G.C. Benson, O. Kiyohara, Tabulation of some integral functions describing diffraction effects in the ultrasonic field of a circular piston source. J. Acoust. Soc. Am. 55, 184–185 (1974)

    Article  Google Scholar 

  15. X.M. Tang, M.N. Toksoz, C.H. Cheng, Elastic radiation and diffraction of a piston source. J. Acoust. Soc. Am. 87, 1894–1902 (1990)

    Article  Google Scholar 

  16. J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, 4th edn. (Springer, New York, 1990)

    Book  Google Scholar 

  17. C.H. Chen, S.K. Sin, On effective spectrum-based ultrasonic deconvolution techniques for hidden flaw characterization. J. Acoust. Soc. Am. 87, 976–987 (1990)

    Article  Google Scholar 

  18. X.M. Tang, M.N. Toksoz, P. Tarif, R.H. Wilkens, A method for measuring acoustic attenuation in the laboratory. J. Acoust. Soc. Am. 83, 453–462 (1988)

    Article  Google Scholar 

  19. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurement (McGraw-Hill, New York, 1973)

    Google Scholar 

  20. W.C. Van Buskirk, S.C. Cowin, R. Carter, A theory of acoustic measurement of the elastic constants of a general anisotropic solid. J. Mater. Sci. 21, 2749–2762 (1986)

    Google Scholar 

  21. C. Aristegui, S. Baste, Determination of the elastic symmetry of a monolithic ceramic using bulk acoustic waves. J. Nondestruct. Eval. 19, 115–127 (2000)

    Article  Google Scholar 

  22. M.F. Markham, Measurement of the elastic constants of fiber composites by ultrasonics. Composites 1, 145–149 (1970)

    Article  Google Scholar 

  23. B. Castagnede, J.T. Jenkins, W. Sachse, S. Baste, Optimal determination of the elastic constants of composite materials from ultrasonic wave speed measurements. J. Appl. Phys. 67, 2753–2761 (1990)

    Article  Google Scholar 

  24. C. Aristegui, S. Baste, Optimal determination of the material symmetry axes and associated elasticity tensor from ultrasonic velocity data. J. Acoust. Soc. Am. 102, 1503–1521 (1997)

    Article  Google Scholar 

  25. C. Aristegui, S. Baste, Optimal recovery of the elasticity tensor of general anisotropic materials from ultrasonic velocity data. J. Acoust. Soc. Am. 101, 813–833 (1997)

    Article  Google Scholar 

  26. M. Fink, W.A. Kuperman, J.P. Montagner, A. Tourin (eds.), Imaging of Complex Media with Acoustic and Seismic Waves (Springer, Heidelberg, 2002)

    Google Scholar 

  27. A. Sedov, L.W. Schmerr, Elastodynamic diffraction correction integrals. J. Acoust. Soc. Am. 86, 2000–2006 (1989)

    Article  Google Scholar 

  28. D.H. Green, H.F. Wang, Shear wave diffraction loss for circular plane-polarized source and receiver. J. Acoust. Soc. Am. 90, 2697–2704 (1991)

    Article  Google Scholar 

  29. D. Cassereau, D. Guyomar, Time deconvolution of diffraction effects—application to calibration and prediction of transducer waveforms. J. Acoust. Soc. Am. 84, 1073–1085 (1988)

    Article  Google Scholar 

  30. D. Cassereau, D. Guyomar, Computation of the impulse diffraction of any obstacle by impulse ray modeling—prediction of the signal distortions. J. Acoust. Soc. Am. 84, 1504–1516 (1988)

    Article  Google Scholar 

  31. A.R. Davies, On the maximum likelihood regularization of Fredholm convolution equations of the first kind, in Treatment of Integral Equations by Numerical Means, ed. by C.T.H. Baker, G.F. Miller (New York, Academic Press, 1982), pp. 95–105

    Google Scholar 

  32. T.L. Rhyne, Radiation coupling of a disk to a plane and back to a disk: an exact solution. J. Acoust. Soc. Am. 61, 318–324 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmerr, L.W. (2016). Material Properties and System Function Determination. In: Fundamentals of Ultrasonic Nondestructive Evaluation. Springer Series in Measurement Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30463-2_9

Download citation

Publish with us

Policies and ethics