Skip to main content

A 3D Spinorial View of 4D Exceptional Phenomena

  • Conference paper
  • First Online:
Symmetries in Graphs, Maps, and Polytopes (SIGMAP 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 159))

Included in the following conference series:

Abstract

We discuss a Clifford algebra framework for discrete symmetry groups (such as reflection, Coxeter, conformal and modular groups), leading to a surprising number of new results. Clifford algebras allow for a particularly simple description of reflections via ‘sandwiching’. This extends to a description of orthogonal transformations in general by means of ‘sandwiching’ with Clifford algebra multivectors, since all orthogonal transformations can be written as products of reflections by the Cartan-Dieudonné theorem. We begin by viewing the largest non-crystallographic reflection/Coxeter group \(H_4\) as a group of rotations in two different ways—firstly via a folding from the largest exceptional group \(E_8\), and secondly by induction from the icosahedral group \(H_3\) via Clifford spinors. We then generalise the second way by presenting a construction of a 4D root system from any given 3D one. This affords a new, spinorial, perspective on 4D phenomena, in particular as the induced root systems are precisely the exceptional ones in 4D, and their unusual automorphism groups are easily explained in the spinorial picture; we discuss the wider context of Platonic solids, Arnold’s trinities and the McKay correspondence. The multivector groups can be used to perform concrete group-theoretic calculations, e.g. those for \(H_3\) and \(E_8\), and we discuss how various representations can also be constructed in this Clifford framework; in particular, representations of quaternionic type arise very naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vladimir Igorevich Arnold. Symplectization, complexification and mathematical trinities. The Arnoldfest, pages 23-37, 1999.

    Google Scholar 

  2. Vladimir Igorevich Arnold. Mathematics: Frontiers and perspectives. Amer Mathematical Society, 2000.

    Google Scholar 

  3. Nicolas Bourbaki. Groupes et algèbres de Lie, chapitres 4, 5 et 6. Masson, Paris, 1981.

    Google Scholar 

  4. T. Damour, M. Henneaux, and H. Nicolai. \(E_{10}\) and a ‘small tension expansion’ of M-Theory. Physical Review Letters, 89:221601, 2002.

    Google Scholar 

  5. Pierre-Philippe Dechant. Models of the Early Universe. PhD thesis, University of Cambridge, UK, 2011.

    Google Scholar 

  6. Pierre-Philippe Dechant. Clifford algebra unveils a surprising geometric significance of quaternionic root systems of Coxeter groups. Advances in Applied Clifford Algebras, 23(2):301-321, 2013, doi:10.1007/s00006-012-0371-3.

    Google Scholar 

  7. Pierre-Philippe Dechant. Platonic solids generate their four-dimensional analogues. Acta Crystallographica Section A: Foundations of Crystallography, 69(6):592-602, 2013.

    Google Scholar 

  8. Pierre-Philippe Dechant. A Clifford algebraic framework for Coxeter group theoretic computations. Advances in Applied Clifford Algebras, 24(1):89-108, 2014.

    Google Scholar 

  9. Pierre-Philippe Dechant. Clifford algebra is the natural framework for root systems and Coxeter groups. group theory: Coxeter, conformal and modular groups. Advances in Applied Clifford Algebras, 2015, doi:10.1007/s00006-015-0584-3.

    Google Scholar 

  10. Pierre-Philippe Dechant. Rank-3 root systems induce root systems of rank 4 via a new Clifford spinor construction. Journal of Physics: Conference Series, 597(1):012027, 2015.

    Google Scholar 

  11. Pierre-Philippe Dechant. The birth of \(E_8\) out of the (s)pinors of the icosahedron submitted to Proceedings of the Royal Society A 20150504, 2016, doi:10.1098/rspa.2015.0504.

    Google Scholar 

  12. Pierre-Philippe Dechant. The E \(_{8}\) geometry from a Clifford perspective, Advances in Applied Clifford Algebras, 2016.

    Google Scholar 

  13. Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock. Novel Kac-Moody-type affine extensions of non-crystallographic Coxeter groups. Journal of Physics A: Mathematical and Theoretical, 45(28):285202, 2012.

    Google Scholar 

  14. Pierre-Philippe Dechant, Céline Boehm, and Reidun Twarock. Affine extensions of noncrystallographic Coxeter groups induced by projection. Journal of Mathematical Physics, 54(9), 2013.

    Google Scholar 

  15. Pierre-Philippe Dechant, Jess Wardman, Tom Keef, and Reidun Twarock. Viruses and fullerenes—symmetry as a common thread? Acta Crystallographica Section A, 70(2):162–167, Mar 2014.

    Google Scholar 

  16. Chris Doran and Anthony N. Lasenby. Geometric Algebra for Physicists. Cambridge University Press, Cambridge, 2003.

    Google Scholar 

  17. Tohru Eguchi, Hirosi Ooguri, and Yuji Tachikawa. Notes on the K3 surface and the Mathieu group \(M_{24}\). Experimental Mathematics, 20(1):91-96, 2011.

    Google Scholar 

  18. Tohru Eguchi, Yuji Sugawara, and Anne Taormina. Liouville field, modular forms and elliptic genera. Journal of high energy physics, 2007(03):119, 2007.

    Google Scholar 

  19. Terry Gannon. Moonshine beyond the Monster: The bridge connecting algebra, modular forms and physics. Cambridge University Press, 2006.

    Google Scholar 

  20. David J. Gross, Jeffrey A. Harvey, Emil J. Martinec, and Ryan Rohm. Heterotic String Theory. 1. The Free Heterotic String. Nucl.Phys., B256:253, 1985.

    Google Scholar 

  21. M. Henneaux, D. Persson, and P. Spindel. Spacelike Singularities and Hidden Symmetries of Gravity. Living Reviews in Relativity, 11:1-+, April 2008.

    Google Scholar 

  22. David Hestenes. Space-Time Algebra. Gordon and Breach, New York, 1966.

    Google Scholar 

  23. David Hestenes. New foundations for classical mechanics; 2nd ed. Fundamental theories of physics. Kluwer, Dordrecht, 1999.

    Google Scholar 

  24. David Hestenes and Garret Sobczyk. Clifford algebra to geometric calculus: a unified language for mathematics and physics. Fundamental theories of physics. Reidel, Dordrecht, 1984.

    Google Scholar 

  25. M. Koca, M. Al-Barwani, and R. Koç. Quaternionic root systems and subgroups of the Aut(\(\text{ F }_{4}\)). Journal of Mathematical Physics, 47(4):043507-+, April 2006.

    Google Scholar 

  26. M. Koca, R. Koç, and M. Al-Barwani. Quaternionic roots of SO(8), SO(9), \(F_{4}\) and the related Weyl groups. Journal of Mathematical Physics, 44:3123-3140, July 2003.

    Google Scholar 

  27. Mehmet Koca, Ramazan Koc, and Muataz Al-Barwani. Noncrystallographic Coxeter group \(H_4\) in \(E_8\). Journal of Physics A: Mathematical and General, 34(50):11201, 2001.

    Google Scholar 

  28. John McKay. Graphs, singularities, and finite groups. In Proc. Symp. Pure Math, volume 37, pages 183-186, 1980.

    Google Scholar 

  29. R. V. Moody and J. Patera. Quasicrystals and icosians. Journal of Physics A: Mathematical and General, 26(12):2829, 1993.

    Google Scholar 

  30. A. N. Schellekens. Introduction to Conformal Field Theory. Fortschritte der Physik, 44:605–705, 1996.

    Google Scholar 

  31. O. P. Shcherbak. Wavefronts and reflection groups. Russian Mathematical Surveys, 43(3):149, 1988.

    Google Scholar 

  32. Anne Taormina and Katrin Wendland. A twist in the \(M_{24}\) moonshine story. arXiv preprintarXiv:1303.3221, 2013.

    Google Scholar 

  33. R. A. Wilson. Geometriae Dedicata, 20:157, 1986.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Reidun Twarock, Anne Taormina, David Hestenes, Anthony Lasenby, John Stillwell, Jozef Siran, Robert Wilson and Ben Fairbairn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Philippe Dechant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dechant, PP. (2016). A 3D Spinorial View of 4D Exceptional Phenomena. In: Širáň, J., Jajcay, R. (eds) Symmetries in Graphs, Maps, and Polytopes. SIGMAP 2014. Springer Proceedings in Mathematics & Statistics, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-30451-9_4

Download citation

Publish with us

Policies and ethics