Skip to main content

A Preliminary Study on Conversion Efficiency Improvement of a Multi-junction PV Cell with MPPT

  • Chapter
  • First Online:
Smart Power Systems and Renewable Energy System Integration

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 57))

Abstract

This chapter presents a preliminary study conducted to improve photovoltaic (PV) cell conversion efficiency using MATLAB/Simulink platform. The study uses multi-junction solar cell and investigates the maximum performance compared with a conventional silicon PV cell. Maximum Power Point Tracker (MPPT) is applied to assess the conversion efficiency of the PV system. Study integrates thermoelectric generator (TEG) with PV modules because the PV cells work by converting high frequency irradiation where as a TEG has the ability to convert wasted low frequency heat to the electricity. The combination delivers more power and contributes to enhance the conversion efficiency of a PV system. The simulation results show that a tandem cell can provide a considerable higher power with a conventional PV cell operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aiken, D. J.: InGaP/GaAs/Ge multi-junction solar cell efficiency improvements using epitaxial Germanium. In: 28th IEEE Photovoltaic Specialists Conference 2000 (PVSC 2000), pp. 994–997. IEEE, Anchorage, AK, USA, 15–22 Sept 2000

    Google Scholar 

  • Azab, M.: Improved circuit model of photovoltaic array. Int. J. Electr. Power Energy Syst. Eng. 2, 185–188 (2009)

    Google Scholar 

  • Bertness, K.A., Friedman, D.J., Olson, J.M.: Tunnel junction interconnects in GaAs-based multijunction solar cells. In: IEEE First World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, USA, pp. 1859–1862, 5–9 Dec 1994

    Google Scholar 

  • Bhattacharya, I., Foo, S.Y.: Effects of gallium-phosphide and indium-gallium-antimonide semiconductor materials on photon absorption of multijunction solar cells. In: IEEE SoutheastCon 2010 (SoutheastCon), pp. 316–319. IEEE, Concord, NC, USA, 18–21 March 2010

    Google Scholar 

  • Bobean, C., Pavel, V.: The study and modeling of a thermoelectric generator module. In: 8th International Symposium on Advanced Topics in Electrical Engineering 2013 (ISymp ATEE 2013), pp. 1–4. IEEE, Bucharest, Romania, 23–25 May 2013

    Google Scholar 

  • Chen, M., Rosendahl, L.A., Condra, T.J., Pedersen, J.K.: Numerical modeling of thermoelectric generators with varing material properties in a circuit simulator. IEEE Trans. Energy Convers. 24, 112–124 (2009)

    Article  Google Scholar 

  • Cotal, H., Fetzer, C., Boisvert, J., Kinsey, G., King, R., Hebert, P., Yoon, H., Karam, N.: III–V multijunction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174–192 (2008)

    Article  Google Scholar 

  • Das, B., Jamatia, A., Chakraborti, A., Kasari, P.R., Bhowmik, M.: New perturb and observe MPPT algorithm and its validation using data from PV module. Int. J. Adv. Eng. Technol. 4, 579–591 (2012)

    Google Scholar 

  • González-Longatt, F.M.: Model of photovoltaic module in Matlabâ„¢. 2do Congreso Iberoamericano De Estudiantes De Ingeniería Eléctrica, Electrónica Y, 2005 Venezuela, pp. 1–5

    Google Scholar 

  • Green, M.A., Emery, K., Hishikawa, Y., Warta, W.: Solar cell efficiency tables (Version 33). Prog. Photovoltaics Res. Appl. 17, 85–94 (2009)

    Article  Google Scholar 

  • Han, H.S., Kim, Y.H., Kim, S.Y., Um, S., Hyun, J.M.: Performance measurement and analysis of a thermoelectric power generator. In:12th IEEE Intersociety Conference on Thermal and Thermochemical Phenomena in Electronic Systems 2010 (IEEE ITherm 2010), pp. 1–7. IEEE, Las Vegas, NV, USA, 2–5 June 2010

    Google Scholar 

  • Hernanz, J.A.R., Martín, J.J.C., Belver, I.Z., Lesaka, J.L., Guerrero, E.Z., PÉREZ, E.P.: Modelling of photovoltaic module. In: International Conference on Renewable Energies and Power Quality 2010 (ICREPQ2010), pp. 1–5, Granada, Spain, 23–25 March 2010

    Google Scholar 

  • Hohm, D.P., Ropp, M.E.: Comparative study of maximum power point tracking algorithms. Prog. Photovoltaics Res. Appl. 11, 47–62 (2003)

    Article  Google Scholar 

  • IEA: World Energy Outlook 2010. International Energy Agency, Paris (2010)

    Google Scholar 

  • Keener, D.N., Marvin, D.C., Brinker, D.J., Curtis, H.B., Price, P.M.: Progress toward technology transition of GaInP2/GaAs/Ge multijunction solar cells. In: 26th IEEE Photovoltaic Specialists Conference 1997 (IEEE PVSC 1997), pp. 787–792. IEEE, Anaheim, CA, 29 September–03 October 1997

    Google Scholar 

  • King, R.R., Law, D.C., Edmondson, K.M., Fetzer, C.M., Kinsey, G.S., Yoon, H., Sherif, R.A., Karam, N.H.: 40 % efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 90 (2007)

    Google Scholar 

  • Landis, G.A., Belgiovane, D.J., Scheiman, D.A.: Temperature coefficient of multijunction space solar cells as a function of concentration. In: 37th IEEE Photovoltaic Specialists Conference (PVSC), pp. 1583–1588. IEEE, Seattle, WA, USA, 20–24 June 2011

    Google Scholar 

  • Mohr, P.J., Taylor, B.N., Newell, D.B.: CODATA recommended values of the fundamental physical constants: 2010∗. National Institute of Standards and Technology, Gaithersburg (2011)

    Google Scholar 

  • Nianchun, W., Yue, W.M., Sheng, S.G.: Study on characteristics of photovoltaic cells based on MATLAB simulation. In: Asia-Pacific Power and Energy Engineering Conference 2011 (APPEEC2011), pp. 1–4. IEEE, Wuhan, China, 23–28 March 2011

    Google Scholar 

  • Or, A.B., Appelbaum, J.: Estimation of multi-junction solar cell parameters. Prog. Photovoltaics Res. Appl. 21, 713–723 (2013)

    Google Scholar 

  • Ortiz-Rivera, E.I., Salazar-Llinas, A., Gonzalez-Llorente, J.: A mathematical model for online electrical characterization of thermoelectric generators using the P–I curves at different temperatures. In: 25th Annual IEEE Applied Power Electronics Conference and Exposition 2010 (IEEE APEC 2010), pp. 2226–2230. IEEE, Palm Springs, CA, USA, 21–25 Feb 2010

    Google Scholar 

  • Phillip, N., Maganga, O., Burnham, K.J., Dunn, J., Rouaud, C., Ellis, M.A., Robinson, S.: Modelling and simulation of a thermoelectric generator for waste heat energy recovery in low carbon vehicles. In: 2nd International Symposium on Environment-Friendly Energies and Applications (ISEFEA), pp. 94–99. IEEE, Newcastle upon Tyne, UK, 25–27 June 2012

    Google Scholar 

  • Qin, L., Lu, X.: Matlab/Simulink-based research on maximum power point tracking of photovoltaic generation. Phys. Procedia 24, 10–18 (2012)

    Article  Google Scholar 

  • Revankar, P.S., Gandhare, W.Z., Thosar, A.G.: Maximum power point tracking for PV systems using MATLAB/SIMULINK. In: 2nd International Conference on Machine Learning and Computing 2010 (ICMLC 2010), pp. 8–11. IEEE, Bangalore, India, 9–11 Feb 2010

    Google Scholar 

  • ScienceDaily: World record solar cell with 44.7 % efficiency. Fraunhofer Institute for Solar Energy Systems. http://www.sciencedaily.com/releases. Accessed 23 Sept 2012

  • Shahan, Z. Sharp hits concentrator solar cell efficiency record, 43.5 %. http://cleantechnica.com/2012/05/31/sharp-hits-concentrator-solar-cell-efficiency-record-43-5/2013] (2013)

  • Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961)

    Article  Google Scholar 

  • Snyder, G.J.: Small thermoelectric generators. Electrochem Soc 2008, 54–56 (2008)

    Google Scholar 

  • Solarex: MSX-60 and MSX-64 Photovoltaic Modules. USA patent application (1997)

    Google Scholar 

  • Solarex-Inc: CIGS Technology (2007)

    Google Scholar 

  • Spectrolab C.: US Patent 6,380,601. USA patent application (2008)

    Google Scholar 

  • Takamoto, T.: Status of multijunction solar cells and future development. In: CS MANTECH Conference 2009, pp. 1–4, Tampa, Florida, USA

    Google Scholar 

  • Thermoelectric, C.: Seebeck Thermoelectric Generator. http://www.customthermoelectric.com (2011)

  • Tobías, I., Luque, A.: Ideal efficiency of monolithic, series-connected multijunction solar cells. Progress in Photovoltaics: Research and Applications 10, pp. 323–329 (2002)

    Google Scholar 

  • Tsai, H.-L., Lin, J.-M.: Model building and simulation of thermoelectric module using Matlab/Simulink. Electron. Mater. 39, 2105–2111 (2010)

    Article  Google Scholar 

  • Virshup, G.F., Chung, B.-C., Werthen, J.G.: 23.9 % Monolithic multijunction solar cell. In: 20th IEEE Photovoltaic Specialists Conference, pp. 441–445. IEEE, Las Vegas, NV, USA (1988)

    Google Scholar 

  • Walker, G.: Evaluating MPPT converter topologies using a Matlab PV model. J. Electr. Electron. Eng. Aust 21, 49–55 (2011)

    Google Scholar 

  • Warmann, E.C., Leite1, M.S., Atwater, H.A.: Photovoltaic efficiencies in lattice-matched III-V multijunction solar cells with unconventional lattice parameters. In: 37th IEEE Photovoltaic Specialists Conference 2011 (PVSC 2011), pp. 570–574. IEEE, Seattle, WA, USA, 20–24 June 2011

    Google Scholar 

  • World-Bank: World development indicators and global development finance. http://www.google.com.au/publicdata/. Accessed 9 Nov 2013

  • Yamaguchi, M., Takamoto, T., Araki, K., Ekinsdaukes, N.: Multi-junction III–V solar cells: current status and future potential. Sol. Energy 79, 78–85 (2005)

    Article  Google Scholar 

  • Yastrebova, N.V.: High-efficiency multi-junction solar cells: Current status and future potential. University of Ottawa, Ottawa (2007)

    Google Scholar 

Download references

Acknowledgement

This research is supported by the Centre for Smart Grid and Sustainable Power Systems, Faculty of Science and Engineering, Curtin University, Perth, Australia and the School of Mechanical and Electrical Engineering, Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narottam Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, N., Wongsodihardjo, H., Islam, S. (2016). A Preliminary Study on Conversion Efficiency Improvement of a Multi-junction PV Cell with MPPT. In: Jayaweera, D. (eds) Smart Power Systems and Renewable Energy System Integration. Studies in Systems, Decision and Control, vol 57. Springer, Cham. https://doi.org/10.1007/978-3-319-30427-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30427-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30425-0

  • Online ISBN: 978-3-319-30427-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics