Advertisement

DXA in Children with Special Needs

Chapter
  • 633 Downloads

Abstract

While measuring and assessing bone mineral density (BMD) in the growing skeleton presents unique challenges, performing these measures in children with musculoskeletal involvement that affects positioning or who have skeletal abnormalities that affect interpretation creates additional unique challenges. Cognitive deficits seen in a variety of medical conditions can also pose challenges to acquiring valid bone density scans. This chapter addresses common scan acquisition and interpretation concerns when measuring/assessing bone density by dual-energy absorptiometry (DXA) in children with special needs. Total body, lumbar spine, forearm, and lateral distal femur regions of interest (ROI) are discussed with regard to their suitability for use in this population. Strategies and solutions for obtaining meaningful scans and for their interpretation are reviewed. Specific medical conditions that result in high risk for compromised bone density, including cerebral palsy, muscular dystrophy, spina bifida, spinal muscular atrophy, and osteogenesis imperfecta will be described with a review of current research findings. This chapter is intended to expand on the principles described in earlier chapters of this book and to highlight the special considerations required when assessing bone density in children with special needs.

Keywords

Disabilities Neuromuscular conditions Lateral distal femur DXA Movement disorder DXA acquisition 

References

  1. 1.
    Apkon SD, Kecskemethy HH. Bone health in children with cerebral palsy. J Pediatr Rehabil Med. 2008;1(2):115–21.PubMedGoogle Scholar
  2. 2.
    Lee JJ, Lyne ED, Kleerekoper M, Logan MS, Belfi RA. Disorders of bone metabolism in severely handicapped children and young adults. Clin Orthop Relat Res. 1989;245:297–302.PubMedGoogle Scholar
  3. 3.
    Henderson RC, Kairalla J, Abbas A, Stevenson RD. Predicting low bone density in children and young adults with quadriplegic cerebral palsy. Dev Med Child Neurol. 2004;46(6):416–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Szalay EA, Cheema A. Children with spina bifida are at risk for low bone density. Clin Orthop Relat Res. 2011;469(5):1253–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Quan A, Adams R, Ekmark E, Baum M. Bone mineral density in children with myelomeningocele. Pediatrics. 1998;102(3):E34.PubMedCrossRefGoogle Scholar
  6. 6.
    Henderson RC. Bone density and other possible predictors of fracture risk in children and adolescents with spastic quadriplegia. Dev Med Child Neurol. 1997;39(4):224–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Forwood MR. Mechanical effects on the skeleton: are there clinical implications? Osteoporos Int. 2001;12(1):77–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res. 2014;29(2):467–78.PubMedCrossRefGoogle Scholar
  9. 9.
    Szalay EA, Harriman D, Eastlund B, Mercer D. Quantifying postoperative bone loss in children. J Pediatr Orthop. 2008;28(3):320–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med. 2006;29(5):489–500.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sibonga JD, Evans HJ, Sung HG, Spector ER, Lang TF, Oganov VS, Bakulin AV, Shackelford LC, LeBlanc AD. Recovery of spaceflight-induced bone loss: bone mineral density after long-duration missions as fitted with an exponential function. Bone. 2007;41(6):973–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith SM, Wastney ME, O’Brien KO, Morukov BV, Larina IM, Abrams SA, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the MIR space station. J Bone Miner Res. 2005;20(2):208–18.PubMedCrossRefGoogle Scholar
  13. 13.
    Ceroni D, Martin X, Delhumeau C, Rizzoli R, Kaelin A, Farpour-Lambert N. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture. J Bone Joint Surg Am. 2012;94(3):208–16.PubMedCrossRefGoogle Scholar
  14. 14.
    Ceroni D, Martin X, Delhumeau-Cartier C, Rizzoli R, Kaelin A, Farpour-Lambert N. Is bone mineral mass truly decreased in teenagers with a first episode of forearm fracture? A prospective longitudinal study. J Pediatr Orthop. 2012;32(6):579–86.PubMedCrossRefGoogle Scholar
  15. 15.
    Cooper C, Dennison EM, Leufkens H, Bishop N, van Staa TP. Epidemiology of childhood fractures in Britain: a study using the general practice research database. J Bone Miner Res. 2004;19:1976–81.PubMedCrossRefGoogle Scholar
  16. 16.
    Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20:71–4.PubMedGoogle Scholar
  17. 17.
    McIvor WC, Samilson RL. Fractures in patients with cerebral palsy. J Bone Joint Surg Am. 1966;48:858–66.PubMedGoogle Scholar
  18. 18.
    Leet AI, Mesfin A, Pichard C, Launay F, Brintzenhofeszoc K, Levey EB, Sponseller PD. Fractures in children with cerebral palsy. J Pediatr Orthop. 2006;26(5):624–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Min Res. 2010;25(3):520–6.CrossRefGoogle Scholar
  20. 20.
    Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15:2011–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon C. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Official Pediatric Positions. J Clin Densitom. 2014;17(2):225–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res. 2005;20(12):2090–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Dowthwaite JN, Flowers PP, Scerpella TA. Agreement between pQCT- and DXA-derived indices of bone geometry, density, and theoretical strength in females of varying age, maturity, and physical activity. J Bone Miner Res. 2011;26(6):1349–57.PubMedCrossRefGoogle Scholar
  25. 25.
    Shepherd JA, Wang L, Fan B, et al. Optimal monitoring time interval between DXA measures in children. J Bone Miner Res. 2011;26(11):2745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, Mahboubi S, Fan B, Frederick MM, Winer K, Shepherd JA. The Bone Mineral Density in Childhood Study (BMDCS): bone mineral content and density according to age, sex and race. J Clin Endocrinol Metab. 2007;92(6):2087–99.PubMedCrossRefGoogle Scholar
  27. 27.
    Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Frederick MM, Huang X, Lu M, Mahboubi S, Hangartner T, Winer KK. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC. Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol. 1998;28(4):241–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Presedo A, Dabney KW, Miller F. Fractures in patients with cerebral palsy. J Pediatr Orthop. 2007;27:147–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ. Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebocontrolled clinical trial. J Pediatr. 2002;141(5):644–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Bachrach SJ, Kecskemethy HH, Harcke HT, Lark RK, Miller F, Henderson RC. Pamidronate treatment and posttreatment bone density in children with spastic quadriplegic cerebral palsy. J Clin Densitom. 2006;9(2):167–74.PubMedCrossRefGoogle Scholar
  32. 32.
    Finbråten AK, Syversen U, Skranes J, Andersen GL, Stevenson RD, Vik T. Bone mineral density and vitamin D status in ambulatory and non-ambulatory children with cerebral palsy. Osteoporos Int. 2015;26(1):141–50.PubMedCrossRefGoogle Scholar
  33. 33.
    Tryon E, Szalay EA. The lateral distal femoral DEXA scan in children: a chronology of growing bone? Orthopedics. 2008;31(11):1093.PubMedCrossRefGoogle Scholar
  34. 34.
    Kecskemethy HH, Harcke HT. Assessment of bone health in children with Disabilities. J Pediatr Rehabil Med. 2014;7(2):111–24.PubMedGoogle Scholar
  35. 35.
    Haas RE, Kecskemethy HH, Lopiccolo MA, Hossain J, Dy RT, Bachrach SJ. Lower extremity bone mineral density in children with congenital spinal dysfunction. Dev Med Child Neurol. 2012;54(12):1133–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Harcke HT, Kecskemethy HH, Conklin D, Scavina M, Mackenzie WG, McKay CP. Assessment of bone mineral density in Duchenne’s muscular dystrophy (DMD) using the lateral distal femur. J Clin Neuromusc Dis. 2006;8:1–6.CrossRefGoogle Scholar
  37. 37.
    Roende G, Ravn K, Fuglsang K, Andersen H, Nielsen JB, Brøndum-Nielsen K, Jensen JE. DXA measurements in Rett syndrome reveal small bones with low bone mass. J Bone Miner Res. 2011;26(9):2280–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Polgreen LE, Thomas W, Fung E, et al. Low bone mineral content and challenges in interpretation of dual-energy x-ray absorptiometry in children with mucopolysaccharidosis types I, II and VI. J Clin Densiom Assess Manag Musculoskel Health. 2014;17(1):200–6.Google Scholar
  39. 39.
    Grissom LE, Kecskemethy HH, Bachrach SJ, McKay CP, Harcke HT. Bone densitometry in pediatric patients treated with pamidronate. Ped Radiol. 2005;35:511–7.CrossRefGoogle Scholar
  40. 40.
    Henderson RC, Lark RK, Newman JE, Kecskemethy H, Fung EB, Renner JB, Harcke HT. Normal pediatric reference data for DXA measures of bone density in the distal femur. Am J Radiol. 2002;178:439–43.Google Scholar
  41. 41.
    Henderson RC, Lark RK, Gurka MJ, Worley G, Fung EB, Conaway M, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1 Pt 1):e5.PubMedCrossRefGoogle Scholar
  42. 42.
    Bachrach SJ, Kecskemethy HH, Harcke HT, Hossain J. Decreased fracture incidence after 1 year of pamidronate treatment in children with spastic quadriplegic cerebral palsy. Dev Med Child Neurol. 2010;52(9):837–42.PubMedCrossRefGoogle Scholar
  43. 43.
    Brunner R, Doderlein L. Pathological fractures in patients with CP. J Ped Orthop B. 1996;5:232–8.Google Scholar
  44. 44.
    Zemel B, Stallings V, Leonard M, Paulhamus D, Kecskemethy HH, Harcke HT, Henderson RC. Revised pediatric reference data for the lateral distal femur measured by dual energy X-ray absorptiometry. J Clin Densit. 2009;12:207–18.CrossRefGoogle Scholar
  45. 45.
    Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the International Society for Clinical Densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16(4):520–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Castillo H, Samson-Fang L, American Academy for Cerebral Palsy and Developmental Medicine Treatment Outcomes Committee Review Panel. Effects of bisphosphonates in children with osteogenesis imperfecta: an AACPDM systematic review. Dev Med Child Neurol. 2009;51(1):17–29.Google Scholar
  47. 47.
    Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocronol. 2011;7(9):540–57.Google Scholar
  48. 48.
    El Maghraoui A, Do Santos Zounon AA, Jroundi I, Nouijai A, Ghazi M, Achemlal L, Bezza A, Tazi MA, Abouqual R. Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. Osteoporos Int. 2005;16(12):1742–8.Google Scholar
  49. 49.
    Worley G, Houlihan CM, Herman-Giddens ME, O’Donnell ME, Conaway M, Stallings VA, Chumlea WC, Henderson RC, Fung EB, Rosenbaum PL, Samson-Fang L, Liptak GS, Calvert RE, Stevenson RD. Secondary sexual characteristics in children with cerebral palsy and moderate to severe motor impairment: a cross-sectional survey. Pediatrics. 2002;110(5):897–902.PubMedCrossRefGoogle Scholar
  50. 50.
    Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Kecskemethy HH, Kubaski F, Harcke HT, Tomatsu S. Bone mineral density in MPS IV A (Morquio Syndrome Type A). Mol Genet Metab. 2016;117(2):144–9.Google Scholar
  52. 52.
    Henderson RC, Lark RK, Renner JB, Fung EB, Stallings VA, Conaway M, et al. Dual X-ray absorptiometry assessment of body composition in children with altered body posture. J Clin Densitom. 2001;4(4):325–35.PubMedCrossRefGoogle Scholar
  53. 53.
    Koo WW, Walters J, Bush AJ. Technical considerations of dual-energy X-ray absorptiometry-based bone mineral measurements for pediatric studies. J Bone Miner Res. 1995;10(12):1998–2004.PubMedCrossRefGoogle Scholar
  54. 54.
    Mughal MZ. Fractures in children with CP. Current Osteoporosis Rep. 2014;12:313–8.Google Scholar
  55. 55.
    Stevenson RD, Conaway M, Barrington JW, Cuthill SL, Worley G, Henderson RC. Fracture rate in children with cerebral palsy. Pediatr Rehabil. 2006;9:396–403.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosenstein BD, Greene WB, Herrington RT, Blum AS. Bone density in myelomeningocele: the effects of ambulatory status and other factors. DevMed Child Neurol. 1987;29(4):486–94.Google Scholar
  57. 57.
    Dosa NP, Eckrich M, Katz DA, Turk M, Liptak GS. Incidence, prevalence, and characteristics of fractures in children, adolescents, and adults with spina bifida. J Spinal Cord Med. 2007;30 suppl 1:S5–9.Google Scholar
  58. 58.
    Mayo AL, Craven BC, McAdam LC, Biggar WD. Bone health in boys with Duchenne muscular dystrophy on long-term daily deflazacort therapy. Neuromuscu Disord. 2012;22:1040–5.CrossRefGoogle Scholar
  59. 59.
    King WM, Ruttencutter R, Nagaraja HN, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68:1607–13.PubMedCrossRefGoogle Scholar
  60. 60.
    Bothwell JE, Gordon KE, Dooley JM, MacSween J, Cummings EA, Salisbury S. Vertebral fractures in boys with Duchenne muscular dystrophy. Clin Pediatr (Phila). 2003;42(4):353–6.CrossRefGoogle Scholar
  61. 61.
    Boyce AM, Tosi LL, Paul SM. Bisphosphonate treatment for children with disabling conditions. PM R. 2014;6(5):427–36.PubMedCrossRefGoogle Scholar
  62. 62.
    Astrom E, Soderhall S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child. 2002;86:356–64.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Plotkin H, Rauch F, Bishop NJ, et al. Pamidronate treatment of severe osteogenesis imperfecta in children under 3 years of age. J Clin Endocrinol Metabol. 2000;85:1846–50. 37.Google Scholar
  64. 64.
    Zacharin M, Bateman J. Pamidronate treatment of osteogenesis imperfecta—lack of correlation between clinical severity, age at onset of treatment, predicted collagen mutation and treatment response. J Pediatr Endocrinol Metab. 2002;15:163–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Rauch F, Plotkin H, Zeitlin L, Glorieux FH. Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res. 2003;18:610–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Arikoski P, Silverwood B, Tillmann V, Bishop NJ. Intravenous pamidronate treatment in children with moderate to severe osteogenesis imperfecta: assessment of indices of dual-energy x-ray absorptiometry and bone metabolic markers during the first year of therapy. Bone. 2004;34:539–46.PubMedCrossRefGoogle Scholar
  67. 67.
    Sumnik Z, Land C, Rieger-Wettengl G, Korber F, Stabrey A, Schoenau E. Effect of pamidronate treatment on vertebral deformity in children with primary osteoporosis. A pilot study using radiographic morphometry. Hormone Res. 2004;61:137–42.PubMedCrossRefGoogle Scholar
  68. 68.
    Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339:947–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110:1293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Palomo T, Fassier F, Ouellet J, Sato A, Montpetit K, Glorieux FH, Rauch F. Intravenous bisphosphonate therapy of young children with osteogenesis imperfecta: skeletal findings during follow up throughout the growing years. J Bone Miner Res. 2015. doi: 10.1002/jbmr.2567 [Epub ahead of print].PubMedGoogle Scholar
  71. 71.
    Biggin A, Zheng L, Briody JN, Coorey CP, Munns CF. The long-term effects of switching from active intravenous bisphosphonate treatment to low-dose maintenance therapy in children with osteogenesis imperfecta. Horm Res Paediatr. 2015;83(3):183–9. doi: 10.1159/000369582. Epub 2015 Feb 10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departments of Biomedical Research and Medical ImagingNemours/A.I. duPont Hospital for ChildrenWilmingtonUSA
  2. 2.Pediatric Orthopedic Surgery, Carrie Tingley HospitalUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of Medical ImagingNemours/A.I. duPont Hospital for ChildrenWilmingtonUSA

Personalised recommendations