Advertisement

DXA Evaluation of Infants and Toddlers

Chapter
  • 649 Downloads

Abstract

This chapter briefly discusses the use of quantitative ultrasound and peripheral quantitative computed tomography, and provides greater details on the use of dual energy X-ray absorptiometry (DXA) for assessing bone parameters in infants and toddlers. The advantages of DXA, including the widespread availability, low cost, ease of use, good precision, and safety, hold true for use in infants and toddlers as outlined by the 2013 ISCD Position Statement. Evidence for a relationship between bone density and fractures is discussed, as well as appropriate skeletal sites to measure, factors that are associated with bone measurements, available normative data, and a summary of the current recommendations on who should be scanned and how results should be presented.

Keywords

Infants Bone Growth Children Toddlers 

References

  1. 1.
    Lachman E. Osteoporosis: the potentialities and limitations of its roentgenologic diagnosis. Am J Roentgenol. 1955;74:712.Google Scholar
  2. 2.
    Greer FR, McCormick A. Bone growth with low bone mineral content in very low birth weight premature infants. Pediatr Res. 1986;20:925–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Moyer-Mileur L, Ledkemeier MJ, Chan GM. Physical activity enhances bone mass in very low birthweight infants. Pediatr Res. 1995;37:314A.Google Scholar
  4. 4.
    Koo W, Walters J, Carlson S. Delayed bone mineralization in preterm infants. J Bone Miner Res. 1995;10:S296.Google Scholar
  5. 5.
    Koo WWK, Gupta JM, Nayanar VV, Wilkinson M, Posen S. Skeletal changes in very low birth weight infants. Arch Dis Child. 1982;57:447–52.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lapillonne AA, Glorieux FH, Salle BL, Braillon PM, Chambon M, Rigo J, et al. Mineral balance and whole body bone mineral content in very low-birth-weight infants. Acta Paediatr Suppl. 1994;405:117–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Specker BL, Beck A, Kalkwarf H, Ho M. Randomized trial of varying mineral intake on total body bone mineral accretion during the first year of life. Pediatrics. 1997;99:e12.PubMedCrossRefGoogle Scholar
  8. 8.
    Rigo J, Nyamugabo K, Picaud JC, Gerard P, Peltain C, DeCurtis M. Reference values of body composition obtained by dual energy x-ray absorptiometry in preterm and term neonates. J Pediatr Gastro Nutr. 1998;27:184–90.CrossRefGoogle Scholar
  9. 9.
    Mehta KC, Specker BL, Bartholmey S, Giddens J, Ho ML. Trial on timing of introduction to solids and food type on infant growth. Pediatrics. 1998;102:569–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Brunton JA, Saigal S, Atkinson SA. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: a randomized trial of a high-energy nutrient-enriched formula fed after hospital discharge. J Pediatr. 1998;133:340–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Butte N, Heinz C, Hopkinson J, Wong W, Shypailo R, Ellis K. Fat mass in infants and toddlers: comparability of total body water, total body potassium, total body electrical conductivity, and dual energy x-ray absorptiometry. J Pediatr Gastro Nutr. 1999;29:184–9.CrossRefGoogle Scholar
  12. 12.
    Kalkwarf H, Abrams SA, DiMeglio LA, Koo WW, Specker BL, Weiler H. Bone densitometry in infants and young children: the 2013 ISCD pediatric official positions. J Clin Densit. 2014;17:243–57.CrossRefGoogle Scholar
  13. 13.
    Baroncelli GI, Federico G, Vignolo M, Valerio G, del Puente A, Maghnie M, et al. Cross-sectional reference data for phalangeal quantitative ultrasound from early childhood to young-adulthood according to gender, age, skeletal growth, and pubertal development. Bone. 2006;39:159–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Zadik Z, Price D, Diamond G. Pediatric reference curves for multi-site quantitative ultrasound and its modulators. Osteoporos Int. 2003;14:857–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Dib L, Arabi A, Maalouf J, Nabulsi M, Fuleihan GEH. Impact of anthropometric, lifestyle, and body composition variables on ultrasound measurements in school children. Bone. 2005;36:736–42.PubMedCrossRefGoogle Scholar
  16. 16.
    Zuccotti G, Vigano A, Cafarello L, Pivetti V, Pogliani L, Puzzovio M, et al. Longitudinal changes of bone ultrasound measurements in healthy infants during the first year of life: influence of gender and type of feeding. Calcif Tissue Int. 2011;89(4):312–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Teitelbaum JE, Rodriguez RJ, Ashmeade TL, Yaniv I, Osuntokun BO, Hudome S, et al. Quantitative ultrasound in the evaluation of bone status in premature and full-term infants. J Clin Densit. 2006;9:358–62.CrossRefGoogle Scholar
  18. 18.
    Fielding KT, Nix DA, Bachrach LK. Comparison of calcaneus ultrasound and dual x-ray absorptiometry in children at risk of osteopenia. J Clin Densit. 2003;6:7–15.CrossRefGoogle Scholar
  19. 19.
    van Rijn RR, van der Sluis IM, Lequin MH, Robben SG, de Muinck Keizer-Schrama SM, Hop WC, et al. Tibial quantitative ultrasound versus whole-body and lumbar spine DXA in a Dutch pediatric and adolescent population. Invest Radiol. 2000;35:548–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Pluskiewica W, Adamczyk P, Drozdzowska B, Szprynger K, Szczepanska M, Halaba Z, et al. Skeletal status in children, adolescents and young adults with end-stage renal failure treated with hemo-orperitoneal dialysis. Osteoporos Int. 2002;13:353–7.CrossRefGoogle Scholar
  21. 21.
    Koo WWK, Bajaj M, Mosely M, Hammami M. Quantitative bone US measurements in neonates and their mothers. Pediatr Radiol. 2008;38:1323–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Bajaj M, Koo WWK, Hammami M, Hockman EM. Effect of subcutaneous fat on quantitative bone ultrasound in chicken and neonates. Pediatr Res. 2010;68:81–3.PubMedCrossRefGoogle Scholar
  23. 23.
    Ferretti JL. Perspectives of pQCT technology associated with biomechanical studies in skeletal research employing rat models. Bone. 1995;17:353S–64.PubMedCrossRefGoogle Scholar
  24. 24.
    Louis O, Willnecker J, Soykens S, Van den Winkel P, Osteaux M. Cortical thickness assessed by peripheral quantitative computed tomography: accuracy evaluated on radius specimens. Osteoporos Int. 1995;5:446–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Butz S, Wuster C, Scheidt-Nave C, Gotz M, Ziegler R. Forearm BMD as measured by peripheral quantitative computed tomography (pQCT) in a German reference population. Osteoporos Int. 1994;4:179–84.PubMedCrossRefGoogle Scholar
  26. 26.
    Lettgen B. Peripheral quantitative computed tomography: reference data and clinical experiences in chronic diseases. In: Schoenau E, editor. Pediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier Science; 1996. p. 141–6.Google Scholar
  27. 27.
    Schiessl H, Ferretti JL, Tysarczyk-Niemeyer G, Willnecker J. Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier; 1996. p. 141–6.Google Scholar
  28. 28.
    Schoenau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res. 1998;49:27–31.CrossRefGoogle Scholar
  29. 29.
    Schoenau E, Werhahn E, Schiedermaier U, Mokow E, Schiessl H, Scheidhauer K, et al. Bone and muscle development during childhood in health and disease. In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier Science; 1996. p. 63–6.Google Scholar
  30. 30.
    Cowell CT, Lu PW, Lloyd-Jones SA, Briody JN, Allen JR, Humphries IR, et al. Volumetric bone mineral density—a potential role in paediatrics. Acta Paediatr Suppl. 1995;411:12–6.PubMedCrossRefGoogle Scholar
  31. 31.
    De Schepper J, De Boeck H, Louis O. Measurement of radial bone mineral density and cortical thickness in children by peripheral quantitative computed tomography. In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy. Amsterdam: Elsevier Science; 1996.Google Scholar
  32. 32.
    Binkley TL, Specker BL. pQCT measurement of bone parameters in young children: validation of technique. J Clin Densit. 2000;3:9–14.CrossRefGoogle Scholar
  33. 33.
    Specker B, Binkley T. Randomized trial of physical activity and calcium supplementation on bone mineral content in 3-5 year old children. J Bone Miner Res. 2003;18:885–92.PubMedCrossRefGoogle Scholar
  34. 34.
    Viljakainen HT, Saarnio E, Hytinantti T, Miettinen M, Surcel H, Makitie O, et al. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metabol. 2010;95:1749–57.CrossRefGoogle Scholar
  35. 35.
    Viljakainen HT, Korhonen T, Hytinantti T, Laitinen EKA, Andersson S, Mäkitie O, et al. Maternal vitamin D status affects bone growth in early childhood—a prospective cohort study. Osteoporos Int. 2011;22(3):883–91.PubMedCrossRefGoogle Scholar
  36. 36.
    Holmlund-Suila E, Viljakainen H, Hytinantti T, Lamberg-Allardt C, Andersson S, Maekitie O. High-dose vitamin D intervention in infants—effects on vitamin D status, calcium homeostasis, and bone strength. J Clin Endocrinol Metab. 2012;97:4139–47.PubMedCrossRefGoogle Scholar
  37. 37.
    Binkley T, Johnson J, Vogel L, Kecskemethy HH, Henderson RC, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy (CP). J Pediatr. 2005;147:791–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Abou-Samra H, Specker B. Walking age does not explain term versus preterm difference in bone geometry. J Pediatr. 2007;151:61–6.PubMedCentralCrossRefGoogle Scholar
  39. 39.
    Binkley T, Specker B, Wittig T. Centile curves for bone densitometry measurements in healthy males and females ages 5-22 years. J Clin Densit. 2002;5:343–53.CrossRefGoogle Scholar
  40. 40.
    Neu CM, Manz F, Rauch F, Merkel A, Schoenau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone. 2001;28:227–32.PubMedCrossRefGoogle Scholar
  41. 41.
    Binkley T, Specker B. Increased periosteal circumference remains present 12 months after an exercise intervention in preschool children. Bone. 2004;35:1383–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Johannsen N, Binkley T, Englert V, Niederauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Macdonald H, Kontulainen S, Khan KM, McKay HA. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res. 2007;22:434–46.PubMedCrossRefGoogle Scholar
  44. 44.
    Schoenau E, Neu CM, Mokov E, Wassmer G, Manz F. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab. 2000;85:1095–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Schoenau E, Neu CM, Rauch F, Manz F. Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone. 2002;31:110–3.PubMedCrossRefGoogle Scholar
  46. 46.
    Binkley T, Parupsky E, Kleinsasser B, Weidauer L, Specker B. Feasibility, compliance, and efficacy of a randomized controlled trial using vibration in pre-pubertal children. J Musculoskelet Neuronal Interact. 2014;14(3):294–302.PubMedGoogle Scholar
  47. 47.
    Koo WW, Hammami M, Hockman EM. Use of fan beam dual energy x-ray absorptiometry to measure body composition of piglets. J Nutr. 2002;132:1380–3.PubMedGoogle Scholar
  48. 48.
    Chauhan S, Koo WW, Hammami M, Hockman EM. Fan beam dual energy X-ray absorptiometry body composition measurements in piglets. J Am Coll Nutr. 2003;22:408–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Damilakis J, Solomou G, Manios G, Karantanas A. Pediatric radiation dose and risk from bone density measurements using a GE Lunar Prodigy scanner. Osteoporos Int. 2013;24:2025–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Thomas S, Kalkwarf H, Buckley D, Heubi J. Effective dose of dual-energy x-ray absorptiometry scans in children as a function of age. J Clin Densit. 2005;8:415–22.CrossRefGoogle Scholar
  51. 51.
    Recommendations on Limits for Exposure to Ionizing Radiation. National Council on Radiation Protection and Measurements., 1987 June 1, 1987. Report No.: 91.Google Scholar
  52. 52.
    Binkley TL, Berry R, Specker BL. Methods for measurement of pediatric bone. Rev Endocrin Metab Disord. 2008; DOI  10.1007/S11154-008-9073-5.
  53. 53.
    Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG. Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med. 1991;325:1597–600.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang Q, Alén M, Nicholson P, Lyytikäinen A, Suuriniemi M, Helkala E, et al. Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study. J Bone Miner Res. 2005;20:954–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Prentice A, Parsons T, Cole T. Uncritical use of bone mineral density in absorptiometry may lead to size related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60:837–42.PubMedGoogle Scholar
  56. 56.
    Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7:137–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Short DF, Gilsanz V, Kalkwarf HJ, Lappe JM, Oberfield S, Shepherd JA, et al. Anthropometric models of bone mineral content and areal bone mineral density based on the bone mineral density in childhood study. Osteoporos Int. 2014; DOI  10.1007/s00198-014-2916-x.
  58. 58.
    Gallo S, Vanstone CA, Weiler HA. Normative data for bone mass in healthy term infants from birth to 1 year of age. J Osteopor. 2012;2012. ID672403.Google Scholar
  59. 59.
    Goksen D, Darcan S, Coker M, Kose T. Bone mineral density of helathy Turkish children and adolescents. J Clin Densit. 2006;9:84–90.CrossRefGoogle Scholar
  60. 60.
    Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95:1265–73.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138:569–70.PubMedGoogle Scholar
  62. 62.
    Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13:143–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case-control study. J Clin Endocrinol Metab. 2003;88:1486–91.PubMedCrossRefGoogle Scholar
  64. 64.
    Clark E, Ness AR, Bishop NJ, Tobias JN. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21:1489–95.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ferrari SL, Chevalley T, Bonjour JP, Rizzoli R. Childhood fractures are associated with decreased bone mass gain during puberty: an early marker of persistent bone fragility? J Bone Miner Res. 2006;21:501–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Kalkwarf HJ, Laor T, Bean J. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22:607–16.PubMedCrossRefGoogle Scholar
  67. 67.
    Rizzoli R, Bianchi ML, Garabedian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46:294–305.PubMedCrossRefGoogle Scholar
  68. 68.
    Amin S, Melton III JL, Achenback SJ, Atkinson EJ, Dekutoski MB, Kirmani S, et al. A distal forearm fracture in childhood is associated with an increased risk for future fragility fractures in adult men, but not women. J Bone Miner Res. 2013;28:1751–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Koo MWM, Yang K, Begeman P, Hammami M, Koo WWK. Prediction of bone strength in growing animals using noninvasive bone mass measurements. Calcif Tissue Int. 2001;68:230–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Mayranpaa MK, Makitie O, Kallio PE. Decreasing incidence and changing pattern of childhood fractures: a population-based study. J Bone Miner Res. 2010;25:2752–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, Fuleihan GEH, Kutilek S, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densit. 2008;11:43–58.CrossRefGoogle Scholar
  72. 72.
    Heaney RP. Bone mienral content, not bone mineral density, is the correct bone measure for growth studies. Am J Clin Nutr. 2003;78:350–1.PubMedGoogle Scholar
  73. 73.
    Taylor A, Konrad PT, Norman ME, Harcke HT. Total body bone mineral density in young children: influence of head bone mineral density. J Bone Miner Res. 1997;12:652–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Courteix D, Lespessailles E, Obert P, Benhamou CL. Skull bone mass deficit in prepubertal highly-trained gymnast girls. Int J Sports Med. 1999;20:328–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Bikle DD, Halloran BP. The response of bone to unloading. J Bone Miner Res. 1999;17:233–44.CrossRefGoogle Scholar
  76. 76.
    Arnaud S, Powell M, Vernikos-Danellis J, Buchanan P. Bone mineral and body composition after 30 day head down tilt bed rest. J Bone Miner Res. 1988;3:S119.Google Scholar
  77. 77.
    Zia-Ullah M, Koo WWK, Hammami M. Lumbar spine bone measurements in infants: whole-body vs lumbar spine dual x-ray absorptiometry scans. J Clin Densit. 2002;5:17–25.CrossRefGoogle Scholar
  78. 78.
    Koo WWK, Hockman EM. Physiologic predictors of lumbar spine bone mass in neonates. Pediatr Res. 2000;48:485–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Kalkwarf HJ, Zemel BS, Yolton K, Heubi JE. Bone mineral content and density of the lumbar spine of infants and toddlers: influence of age, sex, race, growth, and human milk feeding. J Bone Miner Res. 2013;28:206–12.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hazell TJ, Vanstone CA, Rodd CJ, Rauch F, Weiler HA. Bone mineral density measured by a portable x-ray device agrees with dual-energy x-ray absorptiometry at forearm in preschool aged children. J Clin Densit. 2013;16:302–7.CrossRefGoogle Scholar
  81. 81.
    Zanchetta J, Plotkin H, Filgueira M. Bone mass in children: normative values for the 2-20 year old population. Bone. 1995;16:S393–9.Google Scholar
  82. 82.
    Willing MC, Torner JC, Burns TL, Janz KF, Marshall TA, Gilmore J, et al. Percentile distribution of bone measurements in Iowa children: the Iowa Bone Development Study. J Clin Densit. 2005;8:39–47.CrossRefGoogle Scholar
  83. 83.
    Webber CE, Beaumont LF, Morrison J, Sala A, Barr RD. Age-predicted values for lumbar spine, proximal femur, and whole-body bone mineral density: results from a population of normal children aged 3 to 18 years. Can Assoc Radiol J. 2007;58:37.PubMedGoogle Scholar
  84. 84.
    Ausili E, Rigante D, Salvaggio E, Focarelli B, Rendeli C, Ansuini V, et al. Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity. Rheumatol Int. 2012;32:2737–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Gallo S, Comeau K, Vanstone CA, Agellon S, Sharma A, Jones G, et al. Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants. JAMA. 2013;309(17):1785–92.PubMedCrossRefGoogle Scholar
  86. 86.
    Specker BL, Namgung R, Tsang RC. Bone mineral acquisition in utero and during infancy and childhood. In: Marcus R, Feldman D, Kelsey J, editors. Osteoporosis. 2nd ed. San Diego: Academic; 2001. p. 599–620.CrossRefGoogle Scholar
  87. 87.
    Hammami M, Koo WW, Hockman EM. Technical considerations for fan-beam dual-energy x-ray absorptiometry body composition measurements in pediatric studies. J Parenter Enteral Nutr. 2004;28:328–33.CrossRefGoogle Scholar
  88. 88.
    Godang K, Qvigstad E, Voldner N, Isaksen GA, Froslie KF, Notthellen J, et al. Assessing body composition in healthy newborn infants: reliability of dual-energy x-ray absorptiometry. J Clin Densit. 2010;13:151–60.CrossRefGoogle Scholar
  89. 89.
    Ay L, Jaddoe VWV, Hofman A, Moll HA, Raat H, Steegers EAP, et al. Foetal and postnatal growth and bone mass at 6 months: the generation R study. Clin Endocrinol. 2011;74:181–90.CrossRefGoogle Scholar
  90. 90.
    Koo WWK, Massom LR, Walters J. Validation of accuracy and precision of dual energy x-ray absorptiometry for infants. J Bone Miner Res. 1995;10:1111–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, et al. The bone mineral density in childhood study: bone mineral content and bone mineral density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92:2087–99.PubMedCrossRefGoogle Scholar
  92. 92.
    Specker BL, Johannsen N, Binkley T, Finn K. Total body bone mineral content and tibial cortical bone measures in preschool children. J Bone Miner Res. 2001;16:2298–305.PubMedCrossRefGoogle Scholar
  93. 93.
    Abou-Samra H, Stevens D, Binkley T, Specker B. Determinants of bone mass and size in 7-year-old former term, late-preterm and preterm boys. Osteoporos Int. 2009;20:1903–10.PubMedCrossRefGoogle Scholar
  94. 94.
    Lapillonne A, O'Connor DL, Wang D, Rigo J. Nutritional requirements for the late-preterm infant and the preterm infant after hospital discharge. J Pediatr. 2013;162:S90–100.PubMedCrossRefGoogle Scholar
  95. 95.
    Schanler RJ, Burns PA, Abrams SA, Garza C. Bone mineralization outcomes in human milk-fed preterm infants. Pediatr Res. 1992;31:583–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Backstrom MC, Maki R, Kuusela AL, Sievanen H, Koivisto AM, Koskinen M, et al. The long-term effect of early mineral, vitamin D, and breast milk intake on bone mineral status in 9- to 11- year old children born prematurely. J Pedatr Gastroenterol Nutr. 1999;29:575–82.CrossRefGoogle Scholar
  97. 97.
    Fewtrell MS, Prentice A, Jones SC, Bishop NJ, Stirling D, Buffenstein R, et al. Bone mineralization and turnover in preterm infants at 8-12 years of age: the effect of early diet. J Bone Miner Res. 1999;14:810–20.PubMedCrossRefGoogle Scholar
  98. 98.
    van de Lagemaat M, Rotteveel J, van Weissenbruch MM, Lafeber HN. Increased gain in bone mineral content of preterm infants fed an isocaloric, protein-, and mineral-enriched postdischarge formula. Eur J Clin Nutr. 2013;52:1781–5.CrossRefGoogle Scholar
  99. 99.
    Bowden LS, Jones CJ, Ryan SW. Bone mineralisation in ex-preterm infants aged 8 years. Eur J Pediatr. 1999;158:658–61.PubMedCrossRefGoogle Scholar
  100. 100.
    Namgung R, Tsang RC, Specker BL, Sierra RI, Ho ML. Reduced serum osteocalcin and 1,25-dihydroxyvitamin D concentrations and low bone mineral content in small for gestational age infants: evidence of decreased bone formation rates. J Pediatr. 1993;122:269–75.PubMedCrossRefGoogle Scholar
  101. 101.
    Verkauskiene R, Jaquet D, Deghmoun S, Chevenne D, Czernichow P, Lévy-Marchal C. Smallness for gestational age is associated with persistent change in insulin-like growth factor I (IGF-I) and the ratio of IGF-I/IGF-binding protein-3 in adulthood. J Clin Endocrinol Metab. 2005;90:5672–6.PubMedCrossRefGoogle Scholar
  102. 102.
    Lem AJ, van der Kaay DCM, de Ridder MAJ, Bakker-van Waarde WM, van der Hulst FJPCM, Mulder JC, et al. Adult height in short children born SGA treated with growth hormone and gonadotropin releasing hormone analog: Results of a randomized, dose-response GH trial. J Clin Endocrinol Metab. 2012;97:4096–105.PubMedCrossRefGoogle Scholar
  103. 103.
    Garn SM. Lifelong black-white differences in bone size and cortical area (letter). Am J Dis Child. 1990;144:750–1.PubMedGoogle Scholar
  104. 104.
    Hammami M, Koo WW, Hockman EM. Body composition of neonates from fan beam dual energy x-ray absorptiometry measurement. J Parenter Enteral Nutr. 2003;27:423–6.CrossRefGoogle Scholar
  105. 105.
    Rupich RC, Specker BL, Lieuw-A-Fam N, Ho M. Gender and race differences in bone mass during infancy. Calicif Tissue Int. 1996;58:395–7.CrossRefGoogle Scholar
  106. 106.
    Li JY, Specker BL, Ho ML, Tsang RC. Bone mineral content in black and white children 1 to 6 years of age. Am J Dis Child. 1989;143:1346–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Weiler HA, Fitzpatrick-Wong S, Schellenberg J. Bone mass in First Nations, Asian and white newborn infants. Growth Dev Aging. 2008;71(1):35–43.PubMedGoogle Scholar
  108. 108.
    Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, et al. The relationship between lean body mass and bone mienral content in paediatric health and disease. Bone. 2004;35:965–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Hogler W, Briody J, Woodhead H, Chan A, Cowell CT. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr. 2003;143:81–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Wey HE, Binkley T, Beare T, Wey CL, Specker B. Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab. 2011;96:106–14.PubMedCrossRefGoogle Scholar
  111. 111.
    Sudhagoni R, Wey HE, Djira GD, Specker B. Longitudinal effects of fat and lean mass on bone accrual in infants. Bone. 2012;50:638–42.PubMedCrossRefGoogle Scholar
  112. 112.
    Steichen JJ, Tsang RC. Bone mineralization and growth in term infants fed soy-based or cow milk-based formula. J Pediatr. 1987;110:687–92.PubMedCrossRefGoogle Scholar
  113. 113.
    Hillman LS. Bone mineral content in term infants fed human milk, cow milk-based formula, or soy-based formula. J Pediatr. 1988;113:208–12.PubMedCrossRefGoogle Scholar
  114. 114.
    Jones G, Riley M, Dwyer T. Breastfeeding in early life and bone mass in prepubertal children: a longitudinal study. Osteoporos Int. 2000;11:146–52.PubMedCrossRefGoogle Scholar
  115. 115.
    Harvey NC, Robinson SM, Crozier SR, Marriott LD, Gale CR, Cole ZA, et al. Breast-feeding and adherence to infant feeding guidelines do not influence bone mass at age 4 years. Br J Nutrit. 2009;102:915–20.CrossRefGoogle Scholar
  116. 116.
    Fewtrell MS, Kennedy K, Murgatroyd PR, Williams JE, Chomtho S, Lucas A. Breast-feeding and formula feeding in healthy term infants and bone health at age 10 years. Br J Nutr. 2013;1106:1061–7.CrossRefGoogle Scholar
  117. 117.
    Bailey DA, McKay HA, Mirwald RL, Crocker PRE, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res. 1999;14:1672–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Specker BL, Mulligan L, Ho ML. Longitudinal study of calcium intake, physical activity, and bone mineral content in infants 6-18 months of age. J Bone Miner Res. 1999;14:569–76.PubMedCrossRefGoogle Scholar
  119. 119.
    Janz KF, Letuchy EM, Eichenberger-Gimore JM, Burns TL, Torner JC, Willing MD, et al. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exer. 2010;42:1072–8.CrossRefGoogle Scholar
  120. 120.
    Abrams SA, Bhatia JJS, Corkins MR, de Ferranti SD, Golden NH, Silverstein J. Calcium and vitamin D requirement of enterally fed preterm infants. Pediatrics. 2013;131:e1676–83.PubMedCrossRefGoogle Scholar
  121. 121.
    WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. Geneva: WHO Technical Report Series 843; 1994.Google Scholar
  122. 122.
    Leib ES, Lewiecki EM, Binkley N, Hamdy RC. Official positions of the International Society for Clinical Densitometry. J Clin Densit. 2004;7:1–5.CrossRefGoogle Scholar
  123. 123.
    Brunton JA, Weiler HA, Atkinson SA. Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants. Pediatr Res. 1997;41:590–6.PubMedCrossRefGoogle Scholar
  124. 124.
    Picaud JC, Lapillonne A, Pieltain C, Reygrobellet B, Claris O, Salle BL, et al. Software and scan acquisition technique-related discrepancies in bone mineral assessment using dual-energy X-ray absorptiometry in neonates. Acta Paediatr. 2002;91(11):1189–93.PubMedCrossRefGoogle Scholar
  125. 125.
    Koo WW, Hockman EM, Hammami M. Dual energy X-ray absorptiometry measuements in small subjects: conditions affecting clinical measurements. J Am Coll Nutr. 2004;23(3):212–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Avila-Dı́az M, Flores-Huerta S, Martı́nez-Muñiz I, Amato D. Increments in whole body bone mineral content associated with weight and length in pre-term and full-term infants during the first 6 months of life. Arch Med Res. 2001;32:288–92.PubMedCrossRefGoogle Scholar
  127. 127.
    Koo WWK, Hammami M, Margeson DP, Nwaesei C, Montalto MB, Lasekan JB. Reduced bone mineralization in infants fed palm olein-containing formula: a randomized, double-blinded, prospective trial. Pediatrics. 2003;111:1017–23.PubMedCrossRefGoogle Scholar
  128. 128.
    Koo WW, Hammami M, Hockman EM. Interchangeability of pencil-beam and fan-beam dual-energy X-ray absorptiometry measurements in piglets and infants. Am J Clin Nutr. 2003;78(2):236–40.PubMedGoogle Scholar
  129. 129.
    Fields DA, Demerath EW, Pietrobelli A, Chandler-Laney PC. Body composition at 6 months of life: comparison of air displacement plethysmography and dual-energy X-ray absorptiometry. Obesity. 2012;20(11):2302–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Venkataraman PS, Ahluwalia BW. Total bone mineral content and body composition by x-ray densitometry in newborns. Pediatrics. 1992;90:767–70.PubMedGoogle Scholar
  131. 131.
    Atkinson SA, Randall-Simpson J. Factors influencing body composition of premature infants at term-adjusted age. Ann NY Acad Sci. 2000;904:393–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Koo WWK, Bush AJ, Walters J, Carlson SE. Postnatal development of bone mineral status during infancy. J Am Coll Nutr. 1998;17(1):65–70.PubMedCrossRefGoogle Scholar
  133. 133.
    Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis K. Body composition during the first 2 years of life: an updated reference. Pediatr Res. 2000;47(5):578–85.PubMedCrossRefGoogle Scholar
  134. 134.
    Braillon PM, Salle BL, Brunet J, Glorieux FH, Delmas PD, Meunier PJ. Dual energy x-ray absorptiometry measurement of bone mineral content in newborns: validation of a technique. Pediatr Res. 1992;32:77–80.PubMedCrossRefGoogle Scholar
  135. 135.
    Salle BL, Braillon P, Glorieux FH, Brunet J, Cavero E, Meunier PJ. Lumbar bone mineral content measured by dual energy x-ray absorptiometry in newborns and infants. Acta Paediatr. 1992;81:953–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Kurl S, Heinonen K, Jurvelin JS, Lansimies E. Lumbar bone mineral content and density measured using a Lunar DPX densitometer in healthy full-term infants during the first year of life. Clin Physiol Funct Imaging. 2002;22(3):222–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.EA Martin ProgramSouth Dakota State UniversityNorth BrookingsUSA

Personalised recommendations