Indications for DXA in Children and Adolescents



The importance of considering pediatric bone health for osteoporosis prevention is well established. Genetic factors, malnutrition, hormonal disorders, medications, immobilization, and chronic illness during childhood and adolescence may compromise bone size, mineral content accrual, and bone quality. If not reversed, the accrual of peak bone mass may be impaired, thereby increasing the lifetime risk for osteoporotic fracture. Given the widespread availability, speed, high precision, and safety of dual-energy x-ray absorptiometry (DXA), there is abundant research to inform its clinical use in pediatrics. This chapter reviews the current evidence and expert opinion regarding which children and adolescents warrant DXA screening, how often these studies should be repeated, and how the results should be used to guide clinical management.


DXA indications Low bone density Peak bone mass Chronic disease Primary bone disease 


  1. 1.
    Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, et al. Peak bone mass. Osteoporos Int. 2000;11:985–1009.CrossRefPubMedGoogle Scholar
  2. 2.
    Golden NH, Abrams SA. Optimizing bone health in children and adolescents. Pediatrics. 2014;134:e1229–43.CrossRefPubMedGoogle Scholar
  3. 3.
    Mora S, Gilsanz V. Establishment of peak bone mass. Endocrinol Metab Clin N Am. 2003;32:39–63.CrossRefGoogle Scholar
  4. 4.
    Rodd C, Lang B, Ramsay T, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64:122–31.CrossRefGoogle Scholar
  5. 5.
    Huh SY, Gordon CM. Fractures among hospitalized children. Metabolism. 2013;62:315–25.CrossRefPubMedGoogle Scholar
  6. 6.
    WHO Scientific Group. The assessment of osteoporosis at primary health care level. Geneva: World Health Organization; 2004. Accessed 31 Oct 2014 at
  7. 7.
    Crabtree NJ, Arabi A, Bachrach LK, et al. Dual-energy X-ray absorptionmetry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:225–42.CrossRefPubMedGoogle Scholar
  8. 8.
    Gordon CM, Leonard MB, Zemel BS, International Society for Clinical Densitometry, 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom. 2014;17:219–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Bianchi ML, Leonard MB, Bechtold S, et al. Bone health in children and adolescents with chronic disease that may affect the skeleton: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:281–94.CrossRefPubMedGoogle Scholar
  10. 10.
    Ahmed AI, Ilic D, Blake GM, Rymer JM, Fogelman I. Review of 3530 referrals for bone density measurements of spine and femur: evidence that radiographic osteopenia predicts low bone mass. Radiology. 1998;207:619–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Bishop N, Arundel P, Clark E, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom. 2014;17:275–80.CrossRefPubMedGoogle Scholar
  12. 12.
    Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138:569–70.PubMedGoogle Scholar
  13. 13.
    Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4- year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15:2011–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.CrossRefPubMedGoogle Scholar
  15. 15.
    Ma DQ, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case–control study. J Clin Endocrinol Metab. 2003;88:1486–91.CrossRefPubMedGoogle Scholar
  16. 16.
    Blimkie CJR, Lefevre J, Beunen GP, Renson R, Dequeker J, Van Damme P. Fractures, physical activity and growth velocity in adolescent Belgian boys. Med Sci Sports Exerc. 1992;25:801–8.CrossRefGoogle Scholar
  17. 17.
    Cook SD, Harding AF, Morgan EL, Doucet HJ, Bennett JT, O’Brien M, et al. Association of bone mineral density and pediatric fractures. J Pediatr Orthop. 1987;7:424–77.CrossRefPubMedGoogle Scholar
  18. 18.
    Landin LA. Fracture patterns in children. Analysis of 8682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl. 1983;202:1–109.CrossRefPubMedGoogle Scholar
  19. 19.
    DiVasta AD, Feldman HA, Gordon CM. Vertebral fracture assessment in adolescents and young women with anorexia nervosa: a case series. J Clin Densitom. 2014;17(1):207–11.CrossRefPubMedGoogle Scholar
  20. 20.
    Whyte MP. Osteogenesis imperfecta. In: Favus M, editor. Primer on metabolic diseases and disorders of mineral metabolism. Washington, DC: American Society for Bone and Mineral Research; 2003. p. 470–3.Google Scholar
  21. 21.
    Collins MT, Bianco P. Fibrous dysplasia. In: Favus M, editor. Primer on metabolic diseases and disorders of mineral metabolism. Washington, DC: American Society for Bone and Mineral Research; 2003. p. 466–70.Google Scholar
  22. 22.
    Glorieux FH, Pettifor JM, Juppner H, editors. Pediatric bone biology and diseases. Boston: Academic; 2003.Google Scholar
  23. 23.
    Douros K, Loukou I, Nicolaidou P, et al. Bone mass density and associated factors in cystic fibrosis patients of young age. J Paediatr Child Health. 2008;44:681–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Sermet-Gaudelus I, Souberbielle JC, Ruiz JC, et al. Low bone mineral density in young children with cystic fibrosis. Am J Respir Crit Care Med. 2007;175:951–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Rovner AJ, Zemel BS, Leonard MB, Schall JI, Stallings VA. Mild to moderate cystic fibrosis is not associated with increased fracture risk in children and adolescents. J Pediatr. 2005;147:327–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Bacchetta J, Wesseling-Perry K, Gilsanz V, Gales B, Pereira RC, Salusky IB. Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol Online J. 2013;11:6. doi: 10.1186/1546-0096.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krassas GE. Idiopathic juvenile osteoporosis. Ann N Y Acad Sci. 2000;900:409–12.CrossRefPubMedGoogle Scholar
  28. 28.
    Baroncelli GI, Vierucci F, Bertelloni S, et al. Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab. 2013;31:533–43.CrossRefPubMedGoogle Scholar
  29. 29.
    Saha MT, Sievanen H, Salo MK, et al. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int. 2009;20(8):1401–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Heilman K, Zilmer M, Zilmer K, Tillmann V. Lower bone mineral density in children with type 1 diabetes is associated with poor glycemic control and higher serum ICAM-1 and urinary isoprostane levels. J Bone Miner Metab. 2009;27:598–604.CrossRefPubMedGoogle Scholar
  31. 31.
    Diniz-Santos DR, Brandao F, Adan L, et al. 2008 Bone mineralization in young patients with type 1 diabetes mellitus and screening-identified evidence of celiac disease. Dig Dis Sci. 2008;53:1240–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Rayar MS, Nayiager T, Webber CE, et al. Predictors of bony morbidity in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;59:77–82.CrossRefPubMedGoogle Scholar
  33. 33.
    Petryk A, Bergemann TL, Polga KM, et al. Prospective study of changes in bone mineral density and turnover in children after hematopoietic cell transplantation. J Clin Endocrinol Metab. 2006;91:899–905.CrossRefPubMedGoogle Scholar
  34. 34.
    Khastgir G, Studd JW, Fox SW, et al. A longitudinal study of the effect of subcutaneous estrogen replacement on bone in young women with Turner’s syndrome. J Bone Miner Res. 2003;18:925–32.CrossRefPubMedGoogle Scholar
  35. 35.
    Divasta AD, Feldman HA, Giancaterino C, et al. The effect of gonadal and adrenal steroid therapy on skeletal health in adolescents and young women with anorexia nervosa. Metabolism. 2012;61:1010–20.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Misra M, Katzman D, Miller KK, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26:2430–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Fehlings D, Switzer L, Agarwal P, et al. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol. 2012;54:106–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Hough JP, Boyd RN, Keating JL. Systematic review of interventions for low bone mineral density in children with cerebral palsy. Pediatrics. 2010;125:e670–8.CrossRefPubMedGoogle Scholar
  39. 39.
    Mergler S, Evenhuis HM, Boot AM, et al. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51:773–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003;14:761–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee DY, Wetzsteon RJ, Zemel BS, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res 2015;30:575–83.Google Scholar
  42. 42.
    Pitts S, Blood E, Divasta A, Gordon CM. Percentage body fat by dual-energy x-ray absorptiometry is associated with menstrual recovery in adolescents with anorexia nervosa. J Adolesc Health. 2014;54:739–41.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Sermet-Gaudelis I, Bianchi ML, Garabedian M, et al. European cystic fibrosis mineralization guidelines. J Cyst Fibros. 2011;10:S16–23.CrossRefGoogle Scholar
  44. 44.
    Kalkwarf HJ, Abrams SA, DiMeglio LA, Koo WWK, Specker BL, Weiler H. Bone densitometry in infants and young children: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:243–57.CrossRefPubMedGoogle Scholar
  45. 45.
    Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999;135:182–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Shepherd JA, Wang L, Fan B, et al. Optimal monitoring time interval between DXA measures in children. J Bone Miner Res. 2011;26:2745–52.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bailey DA, McKay HA, Mirwald RL, Crocker PRE, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Pourabbas TB, Erkani MA, Nouraei H, Sadeghian M. Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg. 2014;6:180–4.CrossRefGoogle Scholar
  49. 49.
    Aris RM, Merkel PA, Bachrach LK, et al. Consensus statement: guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90:1888–96.CrossRefPubMedGoogle Scholar
  50. 50.
    Wasilewski-Masker K, Kaste SC, Hudson MM, LA Esiashvili M, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics. 2008;121:e705–13.CrossRefPubMedGoogle Scholar
  51. 51.
    Pappa H, Thayu M, Sylvester F, et al. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2011;53:11–25.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Divisions of Adolescent Medicine and EndocrinologyHarvard Medical School, Boston Children’s HospitalBostonUSA
  2. 2.Division of Adolescent and Transition MedicineCincinnati Children’s Hospital Medical Center, University of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations