Skip to main content

Indications for DXA in Children and Adolescents

  • Chapter
  • First Online:
Bone Health Assessment in Pediatrics

Abstract

The importance of considering pediatric bone health for osteoporosis prevention is well established. Genetic factors, malnutrition, hormonal disorders, medications, immobilization, and chronic illness during childhood and adolescence may compromise bone size, mineral content accrual, and bone quality. If not reversed, the accrual of peak bone mass may be impaired, thereby increasing the lifetime risk for osteoporotic fracture. Given the widespread availability, speed, high precision, and safety of dual-energy x-ray absorptiometry (DXA), there is abundant research to inform its clinical use in pediatrics. This chapter reviews the current evidence and expert opinion regarding which children and adolescents warrant DXA screening, how often these studies should be repeated, and how the results should be used to guide clinical management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, et al. Peak bone mass. Osteoporos Int. 2000;11:985–1009.

    Article  CAS  PubMed  Google Scholar 

  2. Golden NH, Abrams SA. Optimizing bone health in children and adolescents. Pediatrics. 2014;134:e1229–43.

    Article  PubMed  Google Scholar 

  3. Mora S, Gilsanz V. Establishment of peak bone mass. Endocrinol Metab Clin N Am. 2003;32:39–63.

    Article  Google Scholar 

  4. Rodd C, Lang B, Ramsay T, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64:122–31.

    Article  Google Scholar 

  5. Huh SY, Gordon CM. Fractures among hospitalized children. Metabolism. 2013;62:315–25.

    Article  CAS  PubMed  Google Scholar 

  6. WHO Scientific Group. The assessment of osteoporosis at primary health care level. Geneva: World Health Organization; 2004. Accessed 31 Oct 2014 at http://www.who.int/chp/topics/Osteoporosis.pdf.

  7. Crabtree NJ, Arabi A, Bachrach LK, et al. Dual-energy X-ray absorptionmetry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:225–42.

    Article  PubMed  Google Scholar 

  8. Gordon CM, Leonard MB, Zemel BS, International Society for Clinical Densitometry, 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom. 2014;17:219–24.

    Article  PubMed  Google Scholar 

  9. Bianchi ML, Leonard MB, Bechtold S, et al. Bone health in children and adolescents with chronic disease that may affect the skeleton: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:281–94.

    Article  PubMed  Google Scholar 

  10. Ahmed AI, Ilic D, Blake GM, Rymer JM, Fogelman I. Review of 3530 referrals for bone density measurements of spine and femur: evidence that radiographic osteopenia predicts low bone mass. Radiology. 1998;207:619–24.

    Article  CAS  PubMed  Google Scholar 

  11. Bishop N, Arundel P, Clark E, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric official positions. J Clin Densitom. 2014;17:275–80.

    Article  PubMed  Google Scholar 

  12. Chan GM, Hess M, Hollis J, Book LS. Bone mineral status in childhood accidental fractures. Am J Dis Child. 1984;138:569–70.

    CAS  PubMed  Google Scholar 

  13. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4- year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15:2011–8.

    Article  CAS  PubMed  Google Scholar 

  14. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139:509–15.

    Article  CAS  PubMed  Google Scholar 

  15. Ma DQ, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fractures in children: a population-based case–control study. J Clin Endocrinol Metab. 2003;88:1486–91.

    Article  CAS  PubMed  Google Scholar 

  16. Blimkie CJR, Lefevre J, Beunen GP, Renson R, Dequeker J, Van Damme P. Fractures, physical activity and growth velocity in adolescent Belgian boys. Med Sci Sports Exerc. 1992;25:801–8.

    Article  Google Scholar 

  17. Cook SD, Harding AF, Morgan EL, Doucet HJ, Bennett JT, O’Brien M, et al. Association of bone mineral density and pediatric fractures. J Pediatr Orthop. 1987;7:424–77.

    Article  CAS  PubMed  Google Scholar 

  18. Landin LA. Fracture patterns in children. Analysis of 8682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl. 1983;202:1–109.

    Article  CAS  PubMed  Google Scholar 

  19. DiVasta AD, Feldman HA, Gordon CM. Vertebral fracture assessment in adolescents and young women with anorexia nervosa: a case series. J Clin Densitom. 2014;17(1):207–11.

    Article  PubMed  Google Scholar 

  20. Whyte MP. Osteogenesis imperfecta. In: Favus M, editor. Primer on metabolic diseases and disorders of mineral metabolism. Washington, DC: American Society for Bone and Mineral Research; 2003. p. 470–3.

    Google Scholar 

  21. Collins MT, Bianco P. Fibrous dysplasia. In: Favus M, editor. Primer on metabolic diseases and disorders of mineral metabolism. Washington, DC: American Society for Bone and Mineral Research; 2003. p. 466–70.

    Google Scholar 

  22. Glorieux FH, Pettifor JM, Juppner H, editors. Pediatric bone biology and diseases. Boston: Academic; 2003.

    Google Scholar 

  23. Douros K, Loukou I, Nicolaidou P, et al. Bone mass density and associated factors in cystic fibrosis patients of young age. J Paediatr Child Health. 2008;44:681–5.

    Article  PubMed  Google Scholar 

  24. Sermet-Gaudelus I, Souberbielle JC, Ruiz JC, et al. Low bone mineral density in young children with cystic fibrosis. Am J Respir Crit Care Med. 2007;175:951–7.

    Article  PubMed  Google Scholar 

  25. Rovner AJ, Zemel BS, Leonard MB, Schall JI, Stallings VA. Mild to moderate cystic fibrosis is not associated with increased fracture risk in children and adolescents. J Pediatr. 2005;147:327–31.

    Article  PubMed  Google Scholar 

  26. Bacchetta J, Wesseling-Perry K, Gilsanz V, Gales B, Pereira RC, Salusky IB. Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol Online J. 2013;11:6. doi:10.1186/1546-0096.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krassas GE. Idiopathic juvenile osteoporosis. Ann N Y Acad Sci. 2000;900:409–12.

    Article  CAS  PubMed  Google Scholar 

  28. Baroncelli GI, Vierucci F, Bertelloni S, et al. Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab. 2013;31:533–43.

    Article  CAS  PubMed  Google Scholar 

  29. Saha MT, Sievanen H, Salo MK, et al. Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int. 2009;20(8):1401–6.

    Article  CAS  PubMed  Google Scholar 

  30. Heilman K, Zilmer M, Zilmer K, Tillmann V. Lower bone mineral density in children with type 1 diabetes is associated with poor glycemic control and higher serum ICAM-1 and urinary isoprostane levels. J Bone Miner Metab. 2009;27:598–604.

    Article  CAS  PubMed  Google Scholar 

  31. Diniz-Santos DR, Brandao F, Adan L, et al. 2008 Bone mineralization in young patients with type 1 diabetes mellitus and screening-identified evidence of celiac disease. Dig Dis Sci. 2008;53:1240–5.

    Article  PubMed  Google Scholar 

  32. Rayar MS, Nayiager T, Webber CE, et al. Predictors of bony morbidity in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;59:77–82.

    Article  PubMed  Google Scholar 

  33. Petryk A, Bergemann TL, Polga KM, et al. Prospective study of changes in bone mineral density and turnover in children after hematopoietic cell transplantation. J Clin Endocrinol Metab. 2006;91:899–905.

    Article  CAS  PubMed  Google Scholar 

  34. Khastgir G, Studd JW, Fox SW, et al. A longitudinal study of the effect of subcutaneous estrogen replacement on bone in young women with Turner’s syndrome. J Bone Miner Res. 2003;18:925–32.

    Article  CAS  PubMed  Google Scholar 

  35. Divasta AD, Feldman HA, Giancaterino C, et al. The effect of gonadal and adrenal steroid therapy on skeletal health in adolescents and young women with anorexia nervosa. Metabolism. 2012;61:1010–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Misra M, Katzman D, Miller KK, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26:2430–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fehlings D, Switzer L, Agarwal P, et al. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol. 2012;54:106–16.

    Article  PubMed  Google Scholar 

  38. Hough JP, Boyd RN, Keating JL. Systematic review of interventions for low bone mineral density in children with cerebral palsy. Pediatrics. 2010;125:e670–8.

    Article  PubMed  Google Scholar 

  39. Mergler S, Evenhuis HM, Boot AM, et al. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51:773–8.

    Article  PubMed  Google Scholar 

  40. Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, et al. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003;14:761–7.

    Article  CAS  PubMed  Google Scholar 

  41. Lee DY, Wetzsteon RJ, Zemel BS, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res 2015;30:575–83.

    Google Scholar 

  42. Pitts S, Blood E, Divasta A, Gordon CM. Percentage body fat by dual-energy x-ray absorptiometry is associated with menstrual recovery in adolescents with anorexia nervosa. J Adolesc Health. 2014;54:739–41.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sermet-Gaudelis I, Bianchi ML, Garabedian M, et al. European cystic fibrosis mineralization guidelines. J Cyst Fibros. 2011;10:S16–23.

    Article  Google Scholar 

  44. Kalkwarf HJ, Abrams SA, DiMeglio LA, Koo WWK, Specker BL, Weiler H. Bone densitometry in infants and young children: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17:243–57.

    Article  PubMed  Google Scholar 

  45. Leonard MB, Propert KJ, Zemel BS, Stallings VA, Feldman HI. Discrepancies in pediatric bone mineral density reference data: potential for misdiagnosis of osteopenia. J Pediatr. 1999;135:182–8.

    Article  CAS  PubMed  Google Scholar 

  46. Shepherd JA, Wang L, Fan B, et al. Optimal monitoring time interval between DXA measures in children. J Bone Miner Res. 2011;26:2745–52.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bailey DA, McKay HA, Mirwald RL, Crocker PRE, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.

    Article  CAS  PubMed  Google Scholar 

  48. Pourabbas TB, Erkani MA, Nouraei H, Sadeghian M. Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg. 2014;6:180–4.

    Article  Google Scholar 

  49. Aris RM, Merkel PA, Bachrach LK, et al. Consensus statement: guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab. 2005;90:1888–96.

    Article  CAS  PubMed  Google Scholar 

  50. Wasilewski-Masker K, Kaste SC, Hudson MM, LA Esiashvili M, Meacham LR. Bone mineral density deficits in survivors of childhood cancer: long-term follow-up guidelines and review of the literature. Pediatrics. 2008;121:e705–13.

    Article  PubMed  Google Scholar 

  51. Pappa H, Thayu M, Sylvester F, et al. Skeletal health of children and adolescents with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2011;53:11–25.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Pitts M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pitts, S., Gordon, C.M. (2016). Indications for DXA in Children and Adolescents. In: Fung, E., Bachrach, L., Sawyer, A. (eds) Bone Health Assessment in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-30412-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30412-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30410-6

  • Online ISBN: 978-3-319-30412-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics