Skip to main content

Tools for Measuring Bone in Children and Adolescents

  • Chapter
  • First Online:
Bone Health Assessment in Pediatrics

Abstract

The aims of bone densitometry and what can be measured in vivo is summarised from the measures which one would ideally wish to extract (material density, compartmental mineral density and total mineral density). Although dual energy X-ray absorptiometry (DXA) is the most widely available and applied bone densitometry technique in clinical practice in adults and children, quantitative computed tomography (QCT), applied to peripheral (radius and tibia) and central (axial; lumbar spine) sites, has some advantages. These included providing a volumetric bone mineral density (BMD; mg/cm3) so is not size dependent, providing separate measures of cortical and trabecular BMD and giving additional size and shape information in the diaphyseal regions from which biomechanical parameters can be extracted. Cross-sectional area of muscle can also be measured and a ‘muscle equivalent density’ so as to explore the muscle-bone unit and the ‘mechanostat’. Peripheral QCT can be performed on dedicated peripheral or general purpose scanners; the 3D volumetric images acquired by multi-detector CT may offer advantages over 2D single slice pQCT in longitudinal studies and in children with disabilities which makes it difficult to obtain ideal positioning in DXA or pQCT on dedicated peripheral scanners. High-resolution pQCT was more recently introduced and offers the opportunity to measure cortical and trabecular bone structure in distal, peripheral skeletal sites. Magnetic resonance imaging offers opportunities to make quantitative assessment of bone size, shape and density without the use of ionising radiation, a particularly advantage in children. Tables are provided of the advantages and limitation of each technique, the reference data available and doses of ionising radiation involved. Although these techniques currently have mainly research applications they do provide complimentary information to that provided by DXA and further advance insights into the effect of diseases and therapies on the skeleton in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A kappa score is a measurement of agreement between two methods when the measurements are measured on a categorical scale. The methods being tested have to rate or classify using the same scale, for example z-scores. Degree of agreement ranges from 0 to 1 with 1 being excellent, 0.8 good, etc.

References

  1. Nelson D, Koo W. Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int. 1999;65:1–3.

    Article  CAS  PubMed  Google Scholar 

  2. Rauch F, Schonau E. Changes in bone density during childhood and adolescence: an approach based on bone's biological organization. J Bone Miner Res. 2001;16(4):597–604.

    Article  CAS  PubMed  Google Scholar 

  3. Carter D, Bouxsein M, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res. 1992;7:137–45.

    Article  CAS  PubMed  Google Scholar 

  4. Kroger H, Kontaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone miner. 1992;17(1):75–85.

    Article  CAS  PubMed  Google Scholar 

  5. Fewtrell MS, Gordon I, Biassoni L, Cole TJ. Dual X-ray absorptiometry (DXA) of the lumbar spine in a clinical paediatric setting: does the method of size-adjustment matter? Bone. 2005;37(3):413–9.

    Article  CAS  PubMed  Google Scholar 

  6. Mazess RB, Barden HS. Bone densitometry for diagnosis and monitoring osteoporosis. Proc Soc Exp Biol Med. 1989;191(3):261–71.

    Article  CAS  PubMed  Google Scholar 

  7. Compston JE, Cooper C, Kanis JA. Fortnightly review: bone densitometry in clinical practice. BMJ. 1995;310(6993):1507–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, et al. Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res. 1996;11(6):707–30.

    Article  CAS  PubMed  Google Scholar 

  9. Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol. 2013;9(1):28–42.

    Article  CAS  PubMed  Google Scholar 

  10. LeBlanc CM, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken). 2010;62(4):516–26.

    Article  CAS  Google Scholar 

  12. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24(7):1326–34.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kyriakou A, Shepherd S, Mason A, Faisal AS. A critical appraisal of vertebral fracture assessment in paediatrics. Bone. 2015;81:255–9.

    Article  PubMed  Google Scholar 

  14. Crabtree NJ, Hogler W, Cooper MS, Shaw NJ. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int. 2013;24(7):2015–24.

    Article  CAS  PubMed  Google Scholar 

  15. Kuet KP, Charlesworth D, Peel NF. Vertebral fracture assessment scans enhance targeting of investigations and treatment within a fracture risk assessment pathway. Osteoporos Int. 2013;24(3):1007–14.

    Article  PubMed  Google Scholar 

  16. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res (Hoboken). 2012;64(1):122–31.

    Article  Google Scholar 

  17. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42.

    Article  PubMed  Google Scholar 

  18. Crabtree NJ, Chapman S, Hogler W, Shaw NJ. Is vertebral fracture assessment by DXA more useful in a high fracture risk paediatric population than in a low-risk screening population. Bone Abstracts (2013) 2 P135. DOI:10.1530/boneabs.2.P135

    Google Scholar 

  19. Adams JE, Shaw N, editors. A practical guide to bone densitometry in children. 1st ed. Bath, UK: National Osteoporosis Society; 2004.

    Google Scholar 

  20. Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone. 2004;35(4):965–72.

    Article  CAS  PubMed  Google Scholar 

  21. Hogler W, Briody J, Woodhead HJ, Chan A, Cowell CT. Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr. 2003;143(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  22. Molgaard C, Thomsen B, Prentice A, Cole T, Michealsen K. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997;76:9–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Prentice A, Parsons T, Cole T. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994;60:837–42.

    CAS  PubMed  Google Scholar 

  24. Warner J, Cowan F, Dunstan F, Evans W, Webb D, Gregory J. Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatr. 1998;87:244–9.

    Google Scholar 

  25. Nevill A, Holder R, Maffulli N, Cheng J, Leung S, Lee W, et al. Adjusting bone mass for differences in projected bone area and other confounding varaibles: an allometric perspective. J Bone Miner Res. 2002;17(4):703–8.

    Article  PubMed  Google Scholar 

  26. Isherwood I, Rutherford R, Pullan B, Adams P. Bone mineral estimation by computed assisted transverse axial tomography. Lancet. 1976;2:712–5.

    Article  CAS  PubMed  Google Scholar 

  27. Guglielmi G, Lang T, Cammisa M, Genant H. Quantitative computed tomography at the axial skeleton. In: Genant H, Guglielmi G, Jergas M, editors. Bone densitometry and osteoporos. Berlin Heidelberg: Springer Verlag; 1998. p. 335–47.

    Chapter  Google Scholar 

  28. Van Rijn R, van der Sluis I, Link T, Grampp S, Guglielmi G, Imhof H, et al. Bone densitometry in children: a critical appraisal. Eur Radiol. 2003;13:700–10.

    PubMed  Google Scholar 

  29. Mughal M, Ward K, Adams J. Assessment of bone status in children by densitometric and quantitative ultrasound techniques. In: Carty H, editor. Imaging in children. 2nd ed. Edinburgh: Elsevier Science; 2004. pp 477–486.

    Google Scholar 

  30. Adams JE, Engelke K, Zemel BS, Ward KA. Quantitative computer tomography in children and adolescents: the 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):258–74.

    Article  PubMed  Google Scholar 

  31. Gilsanz V, Perez FJ, Campbell PP, Dorey FJ, Lee DC, Wren TA. Quantitative CT reference values for vertebral trabecular bone density in children and young adults. Radiology. 2009;250(1):222–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Link TM, Lang TF. Axial QCT: clinical applications and new developments. J Clin Densitom. 2014;17(4):438–48.

    Article  PubMed  Google Scholar 

  33. Faulkner K, McClung M. Quality control of DXA instruments in multicentre trials. Osteoporos Int. 1995;5:218–27.

    Article  CAS  PubMed  Google Scholar 

  34. Genant H, Grampp S, Gluer C, Faulkner K, Jergas M, Engelke K, et al. Universal standardization for dual energy X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res. 1994;9:1503–14.

    Article  CAS  PubMed  Google Scholar 

  35. Kalender W, Felsenberg D, Genant H, Fischer M, Dequeker J, Reeve J. European Spine Phantom - a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol. 1995;20:83–92.

    Article  CAS  PubMed  Google Scholar 

  36. Gilsanz V. Bone density in children: a review of the available techniques and indications. Eur J Radiol. 1998;26:177–82.

    Article  CAS  PubMed  Google Scholar 

  37. Cann C. Low dose CT scanning for quantitative spinal bone mineral analysis. Radiology. 1981;140:813–5.

    Article  CAS  PubMed  Google Scholar 

  38. Kalender W. Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int. 1992;2:82–7.

    Article  CAS  PubMed  Google Scholar 

  39. Gilsanz V, Gibbens D, Roe T, Carlson M, Senac M, Boechat M, et al. Vertebral bone density in children: effect of puberty. Radiology. 1988;166(3):847–50.

    Article  CAS  PubMed  Google Scholar 

  40. Mora S, Gilsanz V, editors. Bone densitometry in children. Berlin Heidelberg: Springer Verlag; 1998.

    Google Scholar 

  41. Genant H, Cann C, Ettinger B, Gordan G. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med. 1982;97:699–705.

    Article  CAS  PubMed  Google Scholar 

  42. Ward K, Alsop C, Caulton J, Rubin C, Adams J, Mughal Z. Low magnitude mechanical loading is osteogenic in children with disabling conditions. J Bone Miner Res. 2004;19(3):360–9.

    Article  PubMed  Google Scholar 

  43. Caulton JM, Ward KA, Alsop CW, Dunn G, Adams JE, Mughal MZ. A randomised controlled trial of standing programme on bone mineral density in non-ambulant children with cerebral palsy. Arch Dis Child. 2004;89(2):131–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, et al. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res. 2014;29(3):570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Felsenberg D, Gowin W. Bone densitometry by dual energy methods. Radiologe. 1999;39(3):186–93.

    Article  CAS  PubMed  Google Scholar 

  46. Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom. 2008;11(1):123–62.

    Article  PubMed  Google Scholar 

  48. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-standing spaceflight. J Bone Miner Res. 2004;19:1006–12.

    Article  PubMed  Google Scholar 

  49. Habashy AH, Yan X, Brown JK, Xiong X, Kaste SC. Estimation of bone mineral density in children from diagnostic CT images: a comparison of methods with and without an internal calibration standard. Bone. 2011;48(5):1087–94.

    Article  PubMed  Google Scholar 

  50. Schneider P, Borner W. Peripheral quantitative computed tomography for bone mineral measurement using a new special QCT-scanner. Methodology, normal values, comparison with manifest osteoporosis. Rofo. 1991;154(3):292–9.

    Article  CAS  PubMed  Google Scholar 

  51. Ruegsegger P, Durand E, Dambacher MA. Localization of regional forearm bone loss from high resolution computed tomographic images. Osteoporos Int. 1991;1(2):76–80.

    Article  CAS  PubMed  Google Scholar 

  52. Ruegsegger P, Durand EP, Dambacher MA. Differential effects of aging and disease on trabecular and compact bone density of the radius. Bone. 1991;12(2):99–105.

    Article  CAS  PubMed  Google Scholar 

  53. Rauch F, Travers R, Munns C, Glorieux FH. Sclerotic metaphyseal lines in a child treated with pamidronate: histomorphometric analysis. J Bone Miner Res. 2004;19(7):1191–3.

    Article  PubMed  Google Scholar 

  54. Sarraf KM. Images in clinical medicine. Radiographic zebra lines from cyclical pamidronate therapy. N Engl J Med. 2011;365(3), e5. July 21, 2011. DOI: 10.1056/NEJMicm1014009

    Google Scholar 

  55. Neu C, Manz F, Rauch F, Merkel A, Schonau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone. 2001;28(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  56. Fujita T, Fujii Y, Goto B. Measurement of forearm bone in children by peripheral computed tomography. Calcif Tissue Int. 1999;64:34–9.

    Article  CAS  PubMed  Google Scholar 

  57. Schiessl H, Ferretti J, Tysarczyk-Niemeyer G, Willnecker J. Noninvasive bone strength index as analyzed by peripheral quantitative computed tomography (pQCT). In: Schoenau E, editor. Paediatric osteology: new developments in diagnostics and therapy, International Congress Series, vol. 1105. Amsterdam: Elsevier; 1996.

    Google Scholar 

  58. Augat P, Iida H, Jiang Y, Diao E, Genant HK. Distal radius fractures: mechanisms of injury and strength prediction by bone mineral assessment. J Orthop Res. 1998;16:629–35.

    Article  CAS  PubMed  Google Scholar 

  59. Schonau E, Neu C, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002;17(6):1095–101.

    Article  Google Scholar 

  60. Schonau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res. 1998;47:27–31.

    Google Scholar 

  61. Binkley T, Specker B. pQCT measurement of bone parameters in young children - validation of technique. J Clin Densitom. 2000;3(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  62. Schonau E, Neu C, Rauch F, Manz F. Gender-specific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone. 2002;31(1):110–3.

    Article  Google Scholar 

  63. Leonard MB, Shults J, Elliott DM, Stallings VA, Zemel BS. Interpretation of whole body dual energy X-ray absorptiometry measures in children: comparison with peripheral quantitative computed tomography. Bone. 2004;34(6):1044–52.

    Article  PubMed  Google Scholar 

  64. Ashby RL, Ward KA, Roberts SA, Edwards L, Mughal MZ, Adams JE. A reference database for the Stratec XCT-2000 peripheral quantitative computed tomography (pQCT) scanner in healthy children and young adults aged 6–19 years. Osteoporos Int. 2009;20(8):1337–46.

    Article  CAS  PubMed  Google Scholar 

  65. Ashby RL, Adams JE, Roberts SA, Mughal MZ, Ward KA. The muscle-bone unit of peripheral and central skeletal sites in children and young adults. Osteoporos Int. 2011;22(1):121–32.

    Article  CAS  PubMed  Google Scholar 

  66. Wetzsteon RJ, Zemel BS, Shults J, Howard KM, Kibe LW, Leonard MB. Mechanical loads and cortical bone geometry in healthy children and young adults. Bone. 2011;48(5):1103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22(2):607–16.

    Article  CAS  PubMed  Google Scholar 

  68. Schonau E, Matkovic V. The functional muscle-bone unit in health and disease. In: Schonau E, Matkovic V, editors. Paediatric osteology prevention of osteoporosis - a paediatric task, International Congress Series, vol. 1154. Singapore: Elsevier; 1998. p. 191–202.

    Google Scholar 

  69. Schweizer R, Martin DD, Schwarze CP, Binder G, Georgiadou A, Ihle J, et al. Cortical bone density is normal in prepubertal children with growth hormone (GH) deficiency, but initially decreases during GH replacement due to early bone remodelling. J Clin Endocrinol Metab. 2003;88(11):5266–72.

    Article  CAS  PubMed  Google Scholar 

  70. Lima EM, Goodman WG, Kuizon BD, Gales B, Emerick A, Goldin J, et al. Bone density measurements in pediatric patients with renal osteodystrophy. Pediatr Nephrol. 2003;18(6):554–9.

    PubMed  Google Scholar 

  71. Moyer-Mileur LJ, Dixon SB, Quick JL, Askew EW, Murray MA. Bone mineral acquisition in adolescents with type 1 diabetes. J Pediatr. 2004;145(5):662–9.

    Article  PubMed  Google Scholar 

  72. Brennan BM, Mughal Z, Roberts SA, Ward K, Shalet SM, Eden TO, et al. Bone mineral density in childhood survivors of acute lymphoblastic leukemia treated without cranial irradiation. J Clin Endocrinol Metab. 2005;90(2):689–94.

    Article  CAS  PubMed  Google Scholar 

  73. Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum. 2004;50(4):1277–85.

    Article  PubMed  Google Scholar 

  74. Bechtold S, Ripperger P, Bonfig W, Pozza RD, Haefner R, Schwarz HP. Growth hormone changes bone geometry and body composition in patients with juvenile idiopathic arthritis requiring glucocorticoid treatment: a controlled study using peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(6):3168–73.

    Article  CAS  PubMed  Google Scholar 

  75. Moyer-Mileur LJ, Quick JL, Murray MA. Peripheral quantitative computed tomography of the tibia: pediatric reference values. J Clin Densitom. 2008;11(2):283–94.

    Article  PubMed  Google Scholar 

  76. Rauch F, Schoenau E. Peripheral quantitative computed tomography of the proximal radius in young subjects--new reference data and interpretation of results. J Musculoskelet Neuronal Interact. 2008;8(3):217–26.

    CAS  PubMed  Google Scholar 

  77. Zemel B, Bass S, Binkley T, Ducher G, Macdonald H, McKay H, et al. Peripheral quantitative computed tomography in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom. 2008;11(1):59–74.

    Article  PubMed  Google Scholar 

  78. Frost H. Bone "mass" and the "mechanostat": a proposal. Anat Rec. 1987;219(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  79. Cheng S, Xu L, Nicholson PH, Tylavsky F, Lyytikainen A, Wang Q, et al. Low volumetric BMD is linked to upper-limb fracture in pubertal girls and persists into adulthood: a seven-year cohort study. Bone. 2009;45(3):480–6.

    Article  PubMed  Google Scholar 

  80. Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010;48(3):601–21.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S. Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res. 2010;25(5):983–93.

    PubMed  Google Scholar 

  83. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP, et al. High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25(4):746–56.

    CAS  PubMed  Google Scholar 

  84. Burrows M, Liu D, McKay H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int. 2010;21(3):515–20.

    Article  CAS  PubMed  Google Scholar 

  85. Liu D, Burrows M, Egeli D, McKay H. Site specificity of bone architecture between the distal radius and distal tibia in children and adolescents: an HR-pQCT study. Calcif Tissue Int. 2010;87(4):314–23.

    Article  CAS  PubMed  Google Scholar 

  86. Gabel L, McKay HA, Nettlefold L, Race D, Macdonald HM. Bone architecture and strength in the growing skeleton: the role of sedentary time. Med Sci Sports Exerc. 2015;47(2):363–72.

    Article  PubMed  Google Scholar 

  87. Bacchetta J, Boutroy S, Vilayphiou N, Ranchin B, Fouque-Aubert A, Basmaison O, et al. Bone assessment in children with chronic kidney disease: data from two new bone imaging techniques in a single-center pilot study. Pediatr Nephrol. 2011;26(4):587–95.

    Article  PubMed  Google Scholar 

  88. Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, et al. Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab. 2015;100(2):594–602. jc20143199.

    Article  CAS  PubMed  Google Scholar 

  89. Ward KA, Riddell AR, Prentice A. Re: ‘Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis’ by Putman et al. J Clin Endocrinol Metab. 2015;100(1):L8. doi: 10.1210/jc.2014–3933.

    Google Scholar 

  90. Donnelly E. Methods for assessing bone quality: a review. Clin Orthop Relat Res. 2011;469(8):2128–38.

    Article  PubMed  Google Scholar 

  91. Ward KA, Adams JE, Hangartner TN. Recommendations for thresholds for cortical bone geometry and density measurement by peripheral quantitative computed tomography. Calcif Tissue Int. 2005;77(5):275–80.

    Article  CAS  PubMed  Google Scholar 

  92. Hong J, Hipp JA, Mulkern RV, Jaramillo D, Snyder BD. Magnetic resonance imaging measurements of bone density and cross-sectional geometry. Calcif Tissue Int. 2000;66(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  93. Hogler W, Blimkie CJ, Cowell CT, Kemp AF, Briody J, Wiebe P, et al. A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone. 2003;33(5):771–8.

    Article  CAS  PubMed  Google Scholar 

  94. Macdonald HM, Heinonen A, Khan K, MacKelvie K, Sievanen H, Whittall K, editors. Geometric characteristics of the developing tibia in early pubertal girls a quantitative MRI study. J Bone Miner Res 2003;18(suppl 1): S66, abstract #F091.

    Google Scholar 

  95. Kroger H, Vainio P, Nieminen J, Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone. 1995;17(2):157–9.

    Article  CAS  PubMed  Google Scholar 

  96. Heinonen A, McKay H, Whithall K, Forster B, Khan K. Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone. 2001;29(4):388–92.

    Article  CAS  PubMed  Google Scholar 

  97. Bass SL, Saxon L, Daly RM, Turner CH, Robling AG, Seeman E, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17(12):2274–80.

    Article  CAS  PubMed  Google Scholar 

  98. Daly RM, Saxon L, Turner CH, Robling AG, Bass SL. The relationship between muscle size and bone geometry during growth and in response to exercise. Bone. 2004;34(2):281–7.

    Article  CAS  PubMed  Google Scholar 

  99. McKay HA, Sievanen H, Petit MA, MacKelvie KJ, Forkheim KM, Whittall KP, et al. Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom. 2004;7(2):161–8.

    Article  PubMed  Google Scholar 

  100. Herlidou S, Grebe R, Grados F, Leuyer N, Fardellone P, Meyer ME. Influence of age and osteoporosis on calcaneus trabecular bone structure: a preliminary in vivo MRI study by quantitative texture analysis. Magn Reson Imaging. 2004;22(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  101. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology. 2003;227(3):708–17.

    Article  PubMed  Google Scholar 

  102. Link TM, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, et al. High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol. 2003;13(4):663–71.

    PubMed  Google Scholar 

  103. Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int. 2002;13(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  104. Laib A, Newitt DC, Lu Y, Majumdar S. New model-independent measures of trabecular bone structure applied to in vivo high-resolution MR images. Osteoporos Int. 2002;13(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  105. Wehrli FW, Hilaire L, Fernandez-Seara M, Gomberg BR, Song HK, Zemel B, et al. Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res. 2002;17(12):2265–73.

    Article  PubMed  Google Scholar 

  106. Wehrli FW, Saha PK, Gomberg BR, Song HK, Snyder PJ, Benito M, et al. Role of magnetic resonance for assessing structure and function of trabecular bone. Top Magn Reson Imaging. 2002;13(5):335–55.

    Article  PubMed  Google Scholar 

  107. Wehrli FW, Leonard MB, Saha PK, Gomberg BR. Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging. 2004;20(1):83–9.

    Article  PubMed  Google Scholar 

  108. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martin JC, Campbell MK, Reid DM. A comparison of radial peripheral quantitative computed tomography, calcaneal ultrasound, and axial dual energy X-ray absorptiometry measurements in women aged 45–55 yr. J Clin Densitom. 1999;2(3):265–73.

    Article  CAS  PubMed  Google Scholar 

  110. Kroger H, Lunt M, Reeve J, Dequeker J, Adams JE, Birkenhager JC, et al. Bone density reduction in various measurement sites in men and women with osteoporotic fractures of spine and hip: the European quantitation of osteoporosis study. Calcif Tissue Int. 1999;64(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  111. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, et al. Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res. 1997;12(5):697–711.

    Article  CAS  PubMed  Google Scholar 

  112. Eastell R, Wahner HW, O'Fallon WM, Amadio PC, Melton 3rd LJ, Riggs BL. Unequal decrease in bone density of lumbar spine and ultradistal radius in Colles' and vertebral fracture syndromes. J Clin Invest. 1989;83(1):168–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Faulkner KG, Gluer CC, Majumdar S, Lang P, Engelke K, Genant HK. Noninvasive measurements of bone mass, structure, and strength: current methods and experimental techniques. AJR Am J Roentgenol. 1991;157(6):1229–37.

    Article  CAS  PubMed  Google Scholar 

  114. Elsasser U, Wilkins B, Hesp R, Thurnham D, Reeve J, Ansell B. Bone rarefaction and crush fractures in juvenile chronic arthritis. Arch Dis Child. 1982;57:377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Varonos S, Ansell B, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcif Tissue Int. 1987;41(2):75–8.

    Article  CAS  PubMed  Google Scholar 

  116. Crabtree NJ, Hogler W, Shaw NJ. Fractures in children with chronic inflammatroy and/or disabling conditions: The SNAP study. Osteoporos Int. 2014;25 Suppl 6:S670.

    Google Scholar 

  117. Black D, Cummings S, Genant H, Nevitt M, Palermo L, Browner W. Axial and appendicular bone density predict fractures in older women. J Bone Miner Res. 1992;7:633–8.

    Article  CAS  PubMed  Google Scholar 

  118. Gardsell P, Johnell O, Nilsson BE. Predicting fractures in women by using forearm bone densitometry. Calcif Tissue Int. 1989;44:235–42.

    Article  CAS  PubMed  Google Scholar 

  119. Goulding A, Cannan R, Williams S, Gold E, Taylor R, Lewis-Barnes N. Bone mineral density in girls with forearm fractures. J Bone Miner Res. 1998;13(1):143–8.

    Article  CAS  PubMed  Google Scholar 

  120. Ma D, Jones G. The association between bone mineral density, metacarpal morphometry, and upper limb fracctures in children: a population-based case–control study. J Clin Endocrinol Metab. 2003;88:1486–91.

    Article  CAS  PubMed  Google Scholar 

  121. Kalkwarf H, Laor T, Bean J. Bone mass, density, and dimensions and forearm fracture risk among injured children. Bone. 2005;36(S2):S40.

    Google Scholar 

  122. Mobley S, Ha E, Landoll J, Badenhop-Stevens N, Clairmont A, Goel P, et al. Children and bone fragility fractures have reduced bone mineral areal density at the forearm and hip and higher percent body fat. J Bone Miner Res. 2005;20(S1).

    Google Scholar 

  123. Goulding A, Jones I, Taylor R, Manning P, Williams S. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15(10):2011–8.

    Article  CAS  PubMed  Google Scholar 

  124. Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res. 2006;21(9):1489–95.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17(2):275–80.

    Article  PubMed  Google Scholar 

  126. Gilsanz V, Boechat M, Roe T, Loro M, Sayre J, Goodman W. Gender differences in vertebral body sizes in children and adoloescents. Radiology. 1994;190:673–7.

    Article  CAS  PubMed  Google Scholar 

  127. Hangartner T, Gilsanz V. Evaluation of cortical bone by computed tomography. J Bone Miner Res. 1996;11(10):1518–25.

    Article  CAS  PubMed  Google Scholar 

  128. Kovanlikaya A, Loro M, Hantgartner T, Reynolds R, Roe T, Gilsanz V. Osteopenia in children: CT assessment. Radiology. 1996;198(3):781–4.

    Article  CAS  PubMed  Google Scholar 

  129. Moyer-Mileur L, Xie B, Pratt T, editors. Peripheral quantitative computed tomography: assessment of tibial bone mass change in preadolescent girls. Federation of American Societies for Experimental Biology, Experimental Biology 2000; San Diego, CA; 2000.

    Google Scholar 

  130. Sievanen H, Koskue V, Rauhio A, Kannus P, Heinonen A, Vuori I. Peripheral quantitative computed tomography in human long bones: evaluation of in vitro and in vivo precision. J Bone Miner Res. 1998;13(5):871–82.

    Article  CAS  PubMed  Google Scholar 

  131. NRPB. Living with radiation. Oxon: National Oncologic Protection Board.

    Google Scholar 

  132. Radiation and The Nuclear Fuel Cycle. World Nuclear Association, 2004 March. Report No.

    Google Scholar 

  133. Huda W, Gkanatsios N. Radiation dosimetry for extremity radiographs. Health Phys. 1998;75(6):492–9.

    Article  CAS  PubMed  Google Scholar 

  134. Hart D, Wall B. Radiation exposure of the UK population from medical and dental X-ray examinations. Oxon: National Radiological Protection Board, 2002 March 2002. Report No.: ISBN 0 85951 468 4.

    Google Scholar 

  135. ARSAC. Notes for guidance on the clinical administration of radiopharmaceuticals and use of sealed radioactive sources. National Radiological Protection Board: Oxon; 1998.

    Google Scholar 

  136. Southard R, Morris J, Mahan J, Hayes J, Torch M, Sommer A, et al. Bone mass in healthy children: measurement with quantitative DXA. Radiology. 1991;179:735–8.

    Article  CAS  PubMed  Google Scholar 

  137. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of Age. Calcif Tissue Int. 1996;59(5):344–51.

    Article  CAS  PubMed  Google Scholar 

  138. Zemel B, Leonard M, Kalkwarf H, Specker B, Moyer-Mileur L, Shepherd J, et al. Reference data for the whole body, lumbar spine and proximal femur for american children relative to age, gender and body size. Am Soc Bone Min Res. 2004;19(S1):S231.

    Google Scholar 

  139. Arabi A, Nabulsi M, Maalouf J, Choucair M, Khalife H, Vieth R, et al. Bone mineral density by age, gender, pubertal stages, and socioeconomic status in healthy Lebanese children and adolescents. Bone. 2004;35(5):1169–79.

    Article  PubMed  Google Scholar 

  140. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, et al. The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab. 2007;92(6):2087–99.

    Article  CAS  PubMed  Google Scholar 

  141. Ward KA, Ashby RL, Roberts SA, Adams JE, Zulf MM. UK reference data for the Hologic QDR Discovery dual-energy x ray absorptiometry scanner in healthy children and young adults aged 6–17 years. Arch Dis Child. 2007;92(1):53–9.

    Article  PubMed  Google Scholar 

  142. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kroger H, Kotaniemi A, Kroger L, Alhava E. Development of bone mass and bone density of the spine and femoral neck--a prospective study of 65 children and adolescents. Bone Miner. 1993;23(3):171–82.

    Article  CAS  PubMed  Google Scholar 

  144. Lu PW, Briody JN, Ogle GD, Morley K, Humphries IR, Allen J, et al. Bone mineral density of total body, spine, and femoral neck in children and young adults: a cross-sectional and longitudinal study. J Bone Miner Res. 1994;9(9):1451–8.

    Article  CAS  PubMed  Google Scholar 

  145. Matkovic V, Jelic T, Wardlaw GM, Ilich JZ, Goel PK, Wright JK, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest. 1994;93(2):799–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Boot AM, de Ridder MAJ, Pols HAP, Krenning EP, de Muinck K-SSMPF. Bone mineral density in children and adolescents: relation to puberty, calcium intake, and physical activity. J Clin Endocrinol Metab. 1997;82(1):57–62.

    CAS  PubMed  Google Scholar 

  147. Maynard LM, Guo SS, Chumlea WC, Roche AF, Wisemandle WA, Zeller CM, et al. Total-body and regional bone mineral content and areal bone mineral density in children aged 8–18 y: the Fels Longitudinal Study. Am J Clin Nutr. 1998;68(5):1111–7.

    CAS  PubMed  Google Scholar 

  148. Zanchetta JR, Plotkin H, Filgueira MLA. Bone mass in children: normative values for the 2-20-year-old population. Bone. 1995;16(4):393S–9.

    CAS  PubMed  Google Scholar 

  149. Plotkin H, Nunez M, Alvarez Filgueira ML, Zanchetta JR. Lumbar spine bone density in Argentine children. Calcif Tissue Int. 1996;58(3):144–9.

    Article  CAS  PubMed  Google Scholar 

  150. Cann C. Quantitative CT, applications: comparison of current scanners. Radiology. 1987;162:257–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith E. Adams M.B.B.S., F.R.C.R., F.R.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, K.A., Link, T.M., Adams, J.E. (2016). Tools for Measuring Bone in Children and Adolescents. In: Fung, E., Bachrach, L., Sawyer, A. (eds) Bone Health Assessment in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-30412-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30412-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30410-6

  • Online ISBN: 978-3-319-30412-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics