Advertisement

Evaluation of Fracture Without Known Trauma: Use of DXA in Differential Diagnosis

Chapter
  • 643 Downloads

Abstract

The possibility of physical child abuse or nonaccidental injury (NAI) has to be considered whenever an infant or child presents with multiple fractures. Clinicians have a duty to exclude accidental injury as well as any underlying medical disorder associated with diminished bone strength that can lead to fracture. Osteogenesis imperfecta (OI) is the most common bone disorder considered in the differential diagnosis of a young child with unexplained fractures. For the majority of children with unexplained fractures, the diagnosis of NAI or OI can be reached with a detailed clinical history, a thorough clinical examination by a clinician experienced in bone disorders, and a skeletal survey interpreted by an experienced pediatric radiologist. DXA measurements rarely help to distinguish healthy infants who have been victims of abuse from those with milder types of OI. This chapter reviews role of bone densitometry in discriminating between healthy infants and children with possible NAI from those with OI. Details are also provided on non-ambulant children with cerebral palsy and those with congenital insensitivity to pain who are prone to fragility fracture.

Keywords

Nonaccidental injury (NAI) Fracture Osteogenesis imperfecta (OI) Cerebral palsy (CP) Congenital insensitivity to pain (CIP) 

References

  1. 1.
    Leventhal JM, Thomas SA, Rosenfield NS, Markowitz RI. Fractures in young children. Distinguishing child abuse from unintentional injuries. Am J Dis Child. 1993;147(1):87–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Hansoti B, Beattie TF. Limb fractures and nonaccidental injury in children less than 24 months of age. Eur J Emerg Med. 2008;15(2):63–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Kemp AM, Dunstan F, Harrison S, Morris S, Mass M, Rolfe K et al. Patterns of skeletal fractures in child abuse: systematic review. BMJ 2008;337;a1518.Google Scholar
  4. 4.
    Deans KJ, et al. Mortality increases with recurrent episodes of nonaccidental trauma in children. J Trauma Acute Care Surg. 2013;75(1):161–5.PubMedCrossRefGoogle Scholar
  5. 5.
    American College of Radiology. ACR practice guideline for skeletal surveys in children. 2006. http://www.acr.org/secondarymainmenucategories/quality_safety/guidelines/pediatric/skeletal_surveys.aspx.
  6. 6.
    The Royal College of Radiologists and Royal College of Paediatrics and Child Health. Standards for radiological investigations of suspected non-accidental injury. London: RCR/RCPCH; 2008.Google Scholar
  7. 7.
    Conway JJ, Collins M, Tanz RR, Radkowski MA, Anandappa E, Hernandez R, Freeman EL. The role of bone scintigraphy in detecting child abuse. Semin Nucl Med. 1993;23:321–33.PubMedCrossRefGoogle Scholar
  8. 8.
    Murphy R, et al. Transverse fractures of the femoral shaft are a better predictor of nonaccidental trauma in young children than spiral fractures are. J Bone Joint Surg Am. 2015;97(2):106–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Kocher MS, Kasser JR. Orthopaedic aspects of child abuse. J Am Acad Orthop Surg. 2000;8(1):10–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Bulloch B, et al. Cause and clinical characteristics of rib fractures in infants. Pediatrics. 2000;105(4), E48.PubMedCrossRefGoogle Scholar
  11. 11.
    In: Kleinman PK, editor. Diagnostic imaging of child abuse: third edition. Cambridge University Press. 2015. ISBN: 9781107010536. 978-1-107-01053-6.Google Scholar
  12. 12.
    Rangel EL, et al. Eliminating disparity in evaluation for abuse in infants with head injury: use of a screening guideline. J Pediatr Surg. 2009;44(6):1229–34. discussion 1234–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilson PM, et al. Utility of head computed tomography in children with a single extremity fracture. J Pediatr. 2014;164(6):1274–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Loder RT, Feinberg JR. Orthopaedic injuries in children with nonaccidental trauma: demographics and incidence from the 2000 kids' inpatient database. J Pediatr Orthop. 2007;27(4):421–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Henderson RC, Lin PP, Greene WB. Bone-mineral density in children and adolescents who have spastic cerebral palsy. J Bone Joint Surg Am. 1995;77(11):1671–81.PubMedGoogle Scholar
  16. 16.
    Tortolani PJ, McCarthy EF, Sponseller PD. Bone mineral density deficiency in children. J Am Acad Orthop Surg. 2002;10(1):57–66.PubMedCrossRefGoogle Scholar
  17. 17.
    Clarke NM, Page JE. Vitamin D deficiency: a paediatric orthopaedic perspective. Curr Opin Pediatr. 2012;24(1):46–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Schilling S, et al. Vitamin D status in abused and nonabused children younger than 2 years old with fractures. Pediatrics. 2011;127(5):835–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Shorr RM, Chesney RW. Rickets: part II. Pediatr Radiol. 2013;43:152–72.CrossRefGoogle Scholar
  20. 20.
    Sillence D, Senn A, Danks D. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16:101–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Biggin A, Munns CF. Osteogenesis imperfecta: diagnosis and treatment. Curr Osteoporos Rep. 2014;12(3):279–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Semler O, Cheung MS, Glorieux FH, Rauch F. Wormian bones in osteogenesis imperfecta: correlation to clinical findings and genotype. Am J Med Genet A. 2010;152A(7):1681–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Marlowe A, Pepin MG, Byers PH. Testing for osteogenesis imperfecta in cases of suspected non-accidental injury. J Med Gen. 2002;39:382–6.CrossRefGoogle Scholar
  24. 24.
    Pepin MG, Byers PH. What every clinical geneticist should know about testing for osteogenesis imperfecta in suspected child abuse cases. Am J Med Genet C Semin Med Genet. 2015. doi: 10.1002/ajmg.c.31459.PubMedGoogle Scholar
  25. 25.
    Johnston Jr CC, Epstein S. Clinical, biochemical, radiographic, epidemiologic, and economic features of osteoporosis. Orthop Clin North Am. 1981;12(3):559–69.PubMedGoogle Scholar
  26. 26.
    Paterson CR, Mole PA. Bone density in osteogenesis imperfecta may well be normal. Postgrad Med J. 1994;70:104–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Davie M, Haddaway M. Bone mineral content and density in healthy subjects and in osteogenesis imperfecta. Arch Dis Child. 1994;70:331–4.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Glorieux F, Lanoue G, Chabot G, Travers R. Bone mineral density in osteogenesis imperfecta. J Bone Min Res. 1994;9:225.Google Scholar
  29. 29.
    Zionts LE, Nash JP, Rude R, Ross T, Stott NS. Bone mineral density in children with mild osteogenesis imperfecta. J Bone Joint Surg Br. 1995;77B:143–7.Google Scholar
  30. 30.
    Cepollaro C, Gonnelli S, Pondrelli C, Montagnani A, Martini S, Bruni D, Gennari C. Osteogenesis imperfecta: bone turnover, bone density, and ultrasound parameters. Calcif Tissue Int. 1999;65:129–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Rauch F, Lalic L, Roughley P, Glorieux FH. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res. 2010;25(6):1367–74.PubMedGoogle Scholar
  32. 32.
    Lund AM, Mølgaard C, Muller J, Skovby F. Bone mineral content and collagen defects in osteogenesis imperfecta. Acta Pædiatr. 1999;88:1083–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Mølgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF. Whole body bone mineral content in healthy children and adolescents. Arch Dis Child. 1997;76:9–15.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Miller ME, Hangartner TN. Bone density measurements by computed tomography in osteogenesis imperfecta-type 1. Osteoporos Int. 1999;9:427–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Bishop NJ, Plotkin H, Lanoue G, Chabot G, Glorieux FH. When is a fracture child abuse? Bone. 23(5):F198 (abstract).Google Scholar
  36. 36.
    Brunner R, Doderlein L. Pathological fractures in patients with cerebral palsy. J Pediatr Orthop B. 1996;5:232–8.PubMedGoogle Scholar
  37. 37.
    Leet AI, Mesfin A, Pichard C, Launay F, Brintzenhofeszoc K, Levey EB, Sponseller DP. Fractures in children with cerebral palsy. J Pediatr Orthop. 2006;26:624–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Presedo A, Dabney KW, Miller F. Fractures in patients with cerebral palsy. J Pediatr Orthop. 2007;27:147–53.PubMedCrossRefGoogle Scholar
  39. 39.
    Mughal MZ. Fractures in children with cerebral palsy. Curr Osteoporos Rep. 2014;12(3):313–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Lingham S, Joester J. Spontaneous fractures in children and adolescents with cerebral palsy. BMJ. 1994;309:265.CrossRefGoogle Scholar
  41. 41.
    Mergler S, Evenhuis HM, Boot AM, De Man SA, Bindels-De Heus KG, Huijbers WA, Penning C. Epidemiology of low bone mineral density and fractures in children with severe cerebral palsy: a systematic review. Dev Med Child Neurol. 2009;51:773–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Harcke HT, Taylor A, Bachrach S, Miller F, Henderson RC. Lateral femoral scan: an alternative method for assessing bone mineral density in children with cerebral palsy. Pediatr Radiol. 1998;28:241–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Henderson RC, Lark RK, Newman JE, Kecskemthy H, Fung EB, Renner JB, Harcke HT. Pediatric reference data for dual X-ray absorptiometric measures of normal bone density in the distal femur. Am J Radiol. 2002;178:439–43.Google Scholar
  44. 44.
    Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, Henderson RC. Revised pediatric reference data for the lateral distal femur measured by Hologic Discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bianchi ML, Leonard MB, Bechtold S, Högler W, Mughal MZ, Schönau E, Sylvester FA, Vogiatzi M, van den Heuvel-Eibrink MM, Ward L. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17(2):281–94.PubMedCrossRefGoogle Scholar
  46. 46.
    Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6.PubMedCrossRefGoogle Scholar
  47. 47.
    Henderson RC, Lark RK, Kecskemethy HH, Miller F, Harcke HT, Bachrach SJ. Bisphosphonates to treat osteopenia in children with quadriplegic cerebral palsy: a randomized, placebo-controlled clinical trial. J Pediatr. 2002;141:644–65.PubMedCrossRefGoogle Scholar
  48. 48.
    Bachrach SJ, Kecskemethy HH, Harcke HT, Lark RK, Miller F, Henderson RC. Pamidronate treatment and posttreatment bone density in children with spastic quadriplegic cerebral palsy. J Clin Densitom. 2006;9:167–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, Kaul A, Kinnett K, McDonald C, Pandya S, Poysky J, Shapiro F, Tomezsko J, Constantin C, DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93.PubMedCrossRefGoogle Scholar
  50. 50.
    Moxley 3rd RT, Pandya S. Weekend high-dosage prednisone: a new option for treatment of Duchenne muscular dystrophy. Neurology. 2011;77(5):416–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20:71–4.PubMedGoogle Scholar
  52. 52.
    Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, Morandi L. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos Int. 2003;14:761–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Crabtree NJ, Roper H, McMurchie H, Shaw NJ. Regional changes in bone area and bone mineral content in boys with Duchenne muscular dystrophy receiving corticosteroid therapy. J Pediatr. 2010;156(3):450–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Cox JJ, Reimann F, Nicholas AK, et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature. 2006;444:894–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Bar-On E, Weigl D, Parvari R, et al. Congenital insensitivity to pain: orthopaedic manifestations. J Bone Joint Surg (Br). 2002;84:252–7.CrossRefGoogle Scholar
  56. 56.
    Leipold E, Liebmann L, Korenke GC, et al. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. 2013;45:1399–404.PubMedCrossRefGoogle Scholar
  57. 57.
    Mardy S, Miura Y, Endo F, Matsuda I, Sztriha L, Frossard P, et al. Congenital insensitivity to pain with anhidrosis: novel mutations in the TRKA (NTRK1) gene encoding a high-affinity receptor for nerve growth factor. Am J Hum Genet. 1999;64:1570–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Paediatric EndocrinologyRoyal Manchester Children’s HospitalManchesterUK
  2. 2.Department of Orthopaedic SurgeryBoston Children’s HospitalBostonUSA
  3. 3.Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations