Skip to main content

Lessons Learned from Clinical Research Using QCT, pQCT, and HR-pQCT

  • Chapter
  • First Online:
Bone Health Assessment in Pediatrics

Abstract

In recent decades, three-dimensional imaging tools such as quantitative computed tomography (QCT), peripheral QCT (pQCT), and high-resolution pQCT (HR-pQCT) have advanced our understanding of the hierarchical nature of bone in the pediatric skeleton and the impact of childhood chronic diseases. We now know that gains in bone mass measured with dual energy X-ray absorptiometry are accompanied by important sex- and maturation-specific changes in bone macro- and microstructure structure in the trabecular and cortical bone compartments, all of which contribute to substantial gains in bone strength. In this chapter we summarize what is currently known about the acquisition of bone strength, structure, and density in healthy children based on QCT studies and review key determinants of bone strength acquisition. We also highlight lessons learned about the impact of childhood chronic disease and associated muscle deficits on bone strength accrual. Finally, we discuss challenges that face researchers and clinicians using these innovative tools and highlight research questions that might guide further study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aBMD:

Areal bone mineral density (g/cm2 by DXA)

BMC:

Bone mineral content (g)

BMD:

Bone mineral density (mg/cm3 by QCT methods)

BSI:

Bone strength index (mg2/mm4 by QCT methods)

BV/TV:

Bone volume fraction

CD:

Crohn’s disease

CSA:

Cross-sectional area (cm2 by QCT methods)

DXA:

Dual energy X-ray absorptiometry

GC:

Glucocorticoid

HR-pQCT:

High-resolution pQCT

PHV:

Peak height velocity

pQCT:

Peripheral quantitative computed tomography

QCT:

Quantitative computed tomography

SSIp :

Polar strength-strain index (mm3 by QCT methods)

SSNS:

Steroid-sensitive nephrotic syndrome

TNF-α:

Tumor necrosis factor-α

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Järvinen TL, Sievänen H, Jokihaara J, Einhorn TA. Revival of bone strength: the bottom line. J Bone Miner Res. 2005;20:717–20.

    Article  PubMed  Google Scholar 

  2. Einhorn TA. Bone strength: the bottom line. Calcif Tissue Int. 1992;51:333–9.

    Article  CAS  PubMed  Google Scholar 

  3. Manske S, Macdonald H, Nishiyama K, Boyd S, McKay H. Clinical tools to evaluate bone strength. Clinic Rev Bone Miner Metab. 2010;8:1–13.

    Google Scholar 

  4. Bouxsein ML. Determinants of skeletal fragility. Best Pract Res Clin Rheumatol. 2005;19:897–911.

    Article  PubMed  Google Scholar 

  5. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94.

    Article  PubMed  Google Scholar 

  6. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study. J Bone Miner Res. 1999;14:1672–9.

    Article  CAS  PubMed  Google Scholar 

  7. Lloyd T, Rollings N, Andon MB, Demers LM, Eggli DF, Kieselhorst K, et al. Determinants of bone density in young women. I. Relationships among pubertal development, total body bone mass, and total body bone density in premenarcheal females. J Clin Endocrinol Metab. 1992;75:383–7.

    CAS  PubMed  Google Scholar 

  8. Mølgaard C, Thomsen BL, Michaelsen KF. Whole body bone mineral accretion in healthy children and adolescents. Arch Dis Child. 1999;81:10–5.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Theintz G, Buchs B, Rizzoli R, Slosman D, Clavien H, Sizonenko PC, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75:1060–5.

    CAS  PubMed  Google Scholar 

  10. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, Mccready LK, et al. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009;24:1033–42.

    Article  PubMed  Google Scholar 

  11. Nishiyama KK, Macdonald HM, Moore SA, Fung T, Boyd SK, McKay HA. Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: an HR-pQCT study. J Bone Miner Res. 2012;27:273–82.

    Article  PubMed  Google Scholar 

  12. Schoenau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab. 2001;86:613–8.

    Article  CAS  PubMed  Google Scholar 

  13. Macdonald H, Kontulainen S, Petit M, Janssen P, McKay H. Bone strength and its determinants in pre- and early pubertal boys and girls. Bone. 2006;39:598–608.

    Article  PubMed  Google Scholar 

  14. Leonard MB, Elmi A, Mostoufi-Moab S, Shults J, Burnham JM, Thayu M, et al. Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J Clin Endocrinol Metab. 2010;95:1681–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Macdonald HM, Kontulainen SA, Mackelvie-O’Brien KJ, Petit MA, Janssen P, Khan KM, et al. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study. Bone. 2005;36:1003–11.

    Article  PubMed  Google Scholar 

  16. Gabel L, Nettlefold L, Brasher PM, Moore S, Ahamed Y, Macdonald HM, et al. Re-examining the surfaces of bone in boys and girls during adolescent growth: a 12-year mixed longitudinal pQCT study. J Bone Miner Res 2015;30:2158–67.

    Google Scholar 

  17. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50.

    Article  PubMed  Google Scholar 

  18. MacNeil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42:1203–13.

    Article  PubMed  Google Scholar 

  19. Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–50.

    Article  PubMed  Google Scholar 

  20. Martin R. Determinants of the mechanical properties of bones. J Biomech. 1991;24:79.

    Article  PubMed  Google Scholar 

  21. Neu CM, Manz F, Rauch F, Merkel A, Schoenau E. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone. 2001;28:227–32.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Q, Wang X-F, Iuliano-Burns S, Ghasem-Zadeh A, Zebaze R, Seeman E. Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J Bone Miner Res. 2010;25:1521–6.

    Article  PubMed  Google Scholar 

  23. Mora S, Goodman WG, Loro ML, Roe TF, Sayre J, Gilsanz V. Age-related changes in cortical and cancellous vertebral bone density in girls: assessment with quantitative CT. Am J Roentgenol. 1994;162:405–9.

    Article  CAS  Google Scholar 

  24. Loro ML, Sayre J, Roe TF, Goran MI, Kaufman FR, Gilsanz V. Early identification of children predisposed to low peak bone mass and osteoporosis later in life. J Clin Endocrinol Metab. 2000;85:3908–18.

    CAS  PubMed  Google Scholar 

  25. Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing. 2006;35 Suppl 2:ii27–31.

    PubMed  Google Scholar 

  26. Parfitt AM. The two faces of growth: benefits and risks to bone integrity. Osteoporosis Int. 1994;4:382–98.

    Article  CAS  Google Scholar 

  27. Rauch F, Neu C, Manz F, Schoenau E. The development of metaphyseal cortex—implications for distal radius fractures during growth. J Bone Miner Res. 2001;16:1547–55.

    Article  CAS  PubMed  Google Scholar 

  28. Farr JN, Amin S, Melton LJ, Kirmani S, Mccready LK, Atkinson EJ, et al. Bone strength and structural deficits in children and adolescents with a distal forearm fracture resulting from mild trauma. J Bone Miner Res. 2014;29:590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Määttä M, Macdonald HM, Mulpuri K, McKay HA. Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCT study. Osteoporosis Int. 2015;26:1163–74.

    Article  Google Scholar 

  30. Chevalley T, Bonjour J-P, Ferrari S, Rizzoli R. Deleterious effect of late menarche on distal tibia microstructure in healthy 20-year-old and premenopausal middle-aged women. J Bone Miner Res. 2009;24:144–52.

    Article  PubMed  Google Scholar 

  31. Garn SM, Frisancho AR, Sandusky ST, McCann MB. Confirmation of the sex difference in continuing subperiosteal apposition. Am J Phys Anthropol. 1972;36:377–80.

    Article  CAS  PubMed  Google Scholar 

  32. Frisancho AR, Garn SM, Ascoli W. Subperiosteal and endosteal bone apposition during adolescence. Hum Biol. 1970;42:639–64.

    CAS  PubMed  Google Scholar 

  33. Neu CM, Rauch F, Manz F, Schoenau E. Modeling of cross-sectional bone size, mass and geometry at the proximal radius: a study of normal bone development using peripheral quantitative computed tomography. Osteoporosis Int. 2001;12:538–47.

    Article  CAS  Google Scholar 

  34. Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F. Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab. 1997;82:1603–7.

    CAS  PubMed  Google Scholar 

  35. Rauch F. Bone accrual in children: adding substance to surfaces. Pediatrics. 2007;119 Suppl 2:S137–40.

    Article  PubMed  Google Scholar 

  36. Kim B-T, Mosekilde L, Duan Y, Zhang X-Z, Tornvig L, Thomsen JS, et al. The structural and hormonal basis of sex differences in peak appendicular bone strength in rats. J Bone Miner Res. 2003;18:150–5.

    Article  CAS  PubMed  Google Scholar 

  37. Seeman E. Periosteal bone formation—a neglected determinant of bone strength. N Engl J Med. 2003;349:320–3.

    Article  PubMed  Google Scholar 

  38. Rauch F. Bone growth in length and width: the Yin and Yang of bone stability. J Musculoskelet Neuronal Interact. 2005;5:194–201.

    CAS  PubMed  Google Scholar 

  39. Xu L, Nicholson P, Wang Q, Alen M, Cheng S. Bone and muscle development during puberty in girls: a seven-year longitudinal study. J Bone Miner Res. 2009;24:1693–8.

    Article  PubMed  Google Scholar 

  40. Wang Q, Alén M, Nicholson P, Lyytikäinen A, Suuriniemi M, Helkala E, et al. Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study. J Bone Miner Res. 2005;20:954–61.

    Article  PubMed  Google Scholar 

  41. Kontulainen SA, Macdonald HM, Khan KM, McKay HA. Examining bone surfaces across puberty: a 20-month pQCT trial. J Bone Miner Res. 2005;20:1202–7.

    Article  PubMed  Google Scholar 

  42. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, et al. Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab. 1998;83:1420–7.

    CAS  PubMed  Google Scholar 

  43. Skaggs DL, Loro ML, Pitukcheewanont P, Tolo V, Gilsanz V. Increased body weight and decreased radial cross-sectional dimensions in girls with forearm fractures. J Bone Miner Res. 2001;16:1337–42.

    Article  CAS  PubMed  Google Scholar 

  44. Kontulainen SA, Macdonald HM, McKay HA. Change in cortical bone density and its distribution differs between boys and girls during puberty. J Clin Endocrinol Metab. 2006;91:2555–61.

    Article  CAS  PubMed  Google Scholar 

  45. Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987;80:706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang X, Kammerer CM, Wheeler VW, Patrick AL, Bunker CH, Zmuda JM. Pleiotropy and heterogeneity in the expression of bone strength-related phenotypes in extended pedigrees. J Bone Miner Res. 2007;22:1766–72.

    Article  PubMed  Google Scholar 

  47. Havill LM, Mahaney MC, Binkley LT, Specker BL. Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J Bone Miner Res. 2007;22:737–46.

    Article  PubMed  Google Scholar 

  48. Xu X-H, Dong S-S, Guo Y, Yang T-L, Lei S-F, Papasian CJ, et al. Molecular genetic studies of gene identification for osteoporosis: the 2009 update. Endocr Rev. 2010;31:447–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ralston SH. Genetics of osteoporosis. Ann N Y Acad Sci. 2010;1192:181–9.

    Article  CAS  PubMed  Google Scholar 

  50. Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50:309–14.

    Article  CAS  PubMed  Google Scholar 

  51. Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219:1–9.

    Article  CAS  PubMed  Google Scholar 

  52. Macdonald HM, Hoy CL, McKay HA. Bone acquisition in adolescence. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. San Diego, CA: Academic; 2013.

    Google Scholar 

  53. Bass SL, Eser P, Daly R. The effect of exercise and nutrition on the mechanostat. J Musculoskelet Neuronal Interact. 2005;5:239–54.

    CAS  PubMed  Google Scholar 

  54. Burr DB. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res. 1997;12:1547–51.

    Article  CAS  PubMed  Google Scholar 

  55. Schönau E. The development of the skeletal system in children and the influence of muscular strength. Horm Res. 1998;49:27–31.

    Article  PubMed  Google Scholar 

  56. Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res. 2002;17:1095–101.

    Article  PubMed  Google Scholar 

  57. Gabel L, McKay HA, Nettlefold L, Race D, Macdonald HM. Bone architecture and strength in the growing skeleton: the role of sedentary time. Med Sci Sports Exerc. 2014;47:363–72.

    Article  Google Scholar 

  58. Wetzsteon RJ, Zemel BS, Shults J, Howard KM, Kibe LW, Leonard MB. Mechanical loads and cortical bone geometry in healthy children and young adults. Bone. 2011;48:1103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ashby RL, Adams JE, Roberts SA, Mughal MZ, Ward KA. The muscle-bone unit of peripheral and central skeletal sites in children and young adults. Osteoporosis Int. 2011;22:121–32.

    Article  CAS  Google Scholar 

  60. Binkley TL, Specker BL. Muscle-bone relationships in the lower leg of healthy pre-pubertal females and males. J Musculoskelet Neuronal Interact. 2008;8:239–43.

    CAS  PubMed  Google Scholar 

  61. Farr JN, Laddu DR, Blew RM, Lee VR, Going SB. Effects of physical activity and muscle quality on bone development in girls. Med Sci Sports Exerc. 2013;45:2332–40.

    Article  PubMed  Google Scholar 

  62. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA. Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res. 2008;23:1946–53.

    Article  PubMed  Google Scholar 

  63. Jackowski SA, Faulkner RA, Farthing JP, Kontulainen SA, Beck TJ, Baxter-Jones ADG. Peak lean tissue mass accrual precedes changes in bone strength indices at the proximal femur during the pubertal growth spurt. Bone. 2009;44:1186–90.

    Article  PubMed  Google Scholar 

  64. Daly RM, Stenevi-Lundgren S, Linden C, Karlsson MK. Muscle determinants of bone mass, geometry and strength in prepubertal girls. Med Sci Sports Exerc. 2008;40:1135–41.

    Article  PubMed  Google Scholar 

  65. Greene DA, Naughton GA. Calcium and vitamin-D supplementation on bone structural properties in peripubertal female identical twins: a randomised controlled trial. Osteoporos Int. 2011;22:489–98.

    Article  CAS  PubMed  Google Scholar 

  66. Moyer-Mileur LJ, Xie B, Ball SD, Pratt T. Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J Musculoskelet Neuronal Interact. 2003;3:63–70.

    CAS  PubMed  Google Scholar 

  67. Moon RJ, Harvey NC, Davies JH, Cooper C. Vitamin D and skeletal health in infancy and childhood. Osteoporosis Int. 2014;25:2673–84.

    Article  CAS  Google Scholar 

  68. Mansbach JM, Ginde AA, Camargo CA. Serum 25-hydroxyvitamin D levels among US children aged 1 to 11 years: do children need more vitamin D? Pediatrics. 2009;124:1404–10.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ginde AA, Liu MC, Camargo CA. Demographic differences and trends of vitamin D insufficiency in the US population, 1988-2004. Arch Intern Med. 2009;169:626–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lehtonen-Veromaa MKM, Möttönen TT, Nuotio IO, Irjala KMA, Leino AE, Viikari JSA. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr. 2002;76:1446–53.

    CAS  PubMed  Google Scholar 

  71. Ward KA, Das G, Roberts SA, Berry JL, Adams JE, Rawer R, et al. A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab. 2010;95:4643–51.

    Article  CAS  PubMed  Google Scholar 

  72. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA. 2014;311:806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM. Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord. 2000;24:627–32.

    Article  CAS  PubMed  Google Scholar 

  74. Petit MA, Beck TJ, Shults J, Zemel BS, Foster BJ, Leonard MB. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. Bone. 2005;36:568–76.

    Article  PubMed  Google Scholar 

  75. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr. 2004;80:514–23.

    CAS  PubMed  Google Scholar 

  76. Hoy CL, Macdonald HM, McKay HA. How does bone quality differ between healthy-weight and overweight adolescents and young adults? Clin Orthop Relat Res. 2013;471:1214–25.

    Article  PubMed  Google Scholar 

  77. Ducher G, Bass SL, Naughton GA, Eser P, Telford RD, Daly RM. Overweight children have a greater proportion of fat mass relative to muscle mass in the upper limbs than in the lower limbs: implications for bone strength at the distal forearm. Am J Clin Nutr. 2009;90:1104–11.

    Article  CAS  PubMed  Google Scholar 

  78. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB. Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone. 2010;46:977–84.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Fricke O, Sumnik Z, Tutlewski B, Stabrey A, Remer T, Schoenau E. Local body composition is associated with gender differences of bone development at the forearm in puberty. Horm Res. 2008;70:105–11.

    Article  CAS  PubMed  Google Scholar 

  80. Leonard MB, Zemel BS, Wrotniak BH, Klieger SB, Shults J, Stallings VA, et al. Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents. Bone. 2014;73:69–76.

    Google Scholar 

  81. Laddu DR, Farr JN, Lee VR, Blew RM, Stump C, Houtkooper L, et al. Muscle density predicts changes in bone density and strength: a prospective study in girls. J Musculoskelet Neuronal Interact. 2014;14:195–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab. 2009;94:3387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Laddu DR, Farr JN, Laudermilk MJ, Lee VR, Blew RM, Stump C, et al. Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls. Arch Osteoporos. 2013;8:156.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, et al. Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab. 2010;95:1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zemel BS. Quantitative computed tomography and computed tomography in children. Curr Osteoporos Rep. 2011;9:284–90.

    Article  PubMed  Google Scholar 

  86. McKay H, Smith E. Winning the battle against childhood physical inactivity: the key to bone strength? J Bone Miner Res. 2008;23:980–5.

    Article  PubMed  Google Scholar 

  87. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.

    Article  CAS  PubMed  Google Scholar 

  88. Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012;40:13–21.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tan VPS, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, et al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29:2161–81.

    Article  PubMed  Google Scholar 

  91. Burt LA, Ducher G, Naughton GA, Courteix D, Greene DA. Gymnastics participation is associated with skeletal benefits in the distal forearm: a 6-month study using peripheral Quantitative Computed Tomography. J Musculoskelet Neuronal Interact. 2013;13:395–404.

    CAS  PubMed  Google Scholar 

  92. Dumith SC, Gigante DP, Domingues MR, Kohl HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40:685–98.

    Article  PubMed  Google Scholar 

  93. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:15–23.

    PubMed  Google Scholar 

  94. Chastin SF, Mandrichenko O, Skelton DA. The frequency of osteogenic activities and the pattern of intermittence between periods of physical activity and sedentary behaviour affects bone mineral content: the cross-sectional NHANES study. BMC Public Health. 2014;14:4.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vicente-Rodriguez G, Ortega FB, Rey-López JP, España-Romero V, Blay VA, Blay G, et al. Extracurricular physical activity participation modifies the association between high TV watching and low bone mass. Bone. 2009;45:925–30.

    Article  CAS  PubMed  Google Scholar 

  96. Gracia-Marco L, Rey-López JP, Santaliestra-Pasías AM, Jiménez-Pavón D, Díaz LE, Moreno LA, et al. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study. BMC Public Health. 2012;12:971.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Khosla S, Melton LJ, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290:1479–85.

    Article  CAS  PubMed  Google Scholar 

  98. Adams JE, Engelke K, Zemel BS, Ward KA. Quantitative computer tomography in children and adolescents: the 2013 ISCD Pediatric Official Positions. J Clin Densitom. 2014;17:258–74.

    Article  PubMed  Google Scholar 

  99. Kalkwarf HJ, Laor T, Bean JA. Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporosis Int. 2011;22:607–16.

    Article  CAS  Google Scholar 

  100. Cheng S, Xu L, Nicholson PHF, Tylavsky F, Lyytikäinen A, Wang Q, et al. Low volumetric BMD is linked to upper-limb fracture in pubertal girls and persists into adulthood: a seven-year cohort study. Bone. 2009;45:480–6.

    Article  PubMed  Google Scholar 

  101. Bala Y, Bui QM, Wang X-F, Iuliano S, Wang Q, Ghasem-Zadeh A, et al. Trabecular and cortical microstructure and fragility of the distal radius in women. J Bone Miner Res. 2015;30:621–9.

    Article  PubMed  Google Scholar 

  102. Darelid A, Ohlsson C, Rudäng R, Kindblom JM, Mellström D, Lorentzon M. Trabecular volumetric bone mineral density is associated with previous fracture during childhood and adolescence in males: the GOOD study. J Bone Miner Res. 2010;25:537–44.

    Article  PubMed  Google Scholar 

  103. Farr JN, Khosla S, Achenbach SJ, Atkinson EJ, Kirmani S, Mccready LK, et al. Diminished bone strength is observed in adult women and men who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res. 2014;29:2193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R. Fractures during childhood and adolescence in healthy boys: relation with bone mass, microstructure, and strength. J Clin Endocrinol Metab. 2011;96:3134–42.

    Article  CAS  PubMed  Google Scholar 

  105. Chevalley T, Bonjour JP, van Rietbergen B, Rizzoli R, Ferrari S. Fractures in healthy females followed from childhood to early adulthood are associated with later menarcheal age and with impaired bone microstructure at peak bone mass. J Clin Endocrinol Metab. 2012;97:4174–81.

    Article  CAS  PubMed  Google Scholar 

  106. Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology. 1997;112:1710–3.

    Article  CAS  PubMed  Google Scholar 

  107. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24:1326–34.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64:122–31.

    Article  Google Scholar 

  109. Helenius I, Remes V, Salminen S, Valta H, Mäkitie O, Holmberg C, et al. Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J Bone Miner Res. 2006;21:380–7.

    Article  PubMed  Google Scholar 

  110. Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Ann Rheum Dis. 2006;65:1074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rossini M, Del Marco A, Dal Santo F, Gatti D, Braggion C, James G, et al. Prevalence and correlates of vertebral fractures in adults with cystic fibrosis. Bone. 2004;35:771–6.

    Article  CAS  PubMed  Google Scholar 

  112. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  CAS  PubMed  Google Scholar 

  113. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim HJ, Zhao H, Kitaura H, Bhattacharyya S, Brewer JA, Muglia LJ, et al. Glucocorticoids and the osteoclast. Ann N Y Acad Sci. 2007;1116:335–9.

    Article  CAS  PubMed  Google Scholar 

  115. Tsampalieros A, Berkenstock MK, Zemel BS, Griffin L, Shults J, Burnham JM, et al. Changes in trabecular bone density in incident pediatric Crohn’s disease: a comparison of imaging methods. Osteoporosis Int. 2014;25:1875–83.

    Article  CAS  Google Scholar 

  116. Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-alpha on bone homeostasis. Frontiers Immunol. 2014;5:48.

    Google Scholar 

  117. Rall LC, Roubenoff R. Rheumatoid cachexia: metabolic abnormalities, mechanisms and interventions. Rheumatology (Oxford). 2004;43:1219–23.

    Article  CAS  Google Scholar 

  118. Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T. Immunological reaction in TNF-alpha-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol. 2013;2013:181849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Hegarty J, Mughal MZ, Adams J, Webb NJ. Reduced bone mineral density in adults treated with high-dose corticosteroids for childhood nephrotic syndrome. Kidney Int. 2005;68:2304–9.

    Article  CAS  PubMed  Google Scholar 

  120. Tsampalieros A, Kalkwarf HJ, Wetzsteon RJ, Shults J, Zemel BS, Foster BJ, et al. Changes in bone structure and the muscle-bone unit in children with chronic kidney disease. Kidney Int. 2013;83:495–502.

    Article  CAS  PubMed  Google Scholar 

  121. Wetzsteon RJ, Shults J, Zemel BS, Gupta PU, Burnham JM, Herskovitz RM, et al. Divergent effects of glucocorticoids on cortical and trabecular compartment BMD in childhood nephrotic syndrome. J Bone Miner Res. 2009;24:503–13.

    Article  CAS  PubMed  Google Scholar 

  122. Bechtold S, Alberer M, Arenz T, Putzker S, Filipiak-Pittroff B, Schwarz HP, et al. Reduced muscle mass and bone size in pediatric patients with inflammatory bowel disease. Inflamm Bowel Dis. 2010;16:216–25.

    Article  PubMed  Google Scholar 

  123. Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136:123–30.

    Google Scholar 

  124. Tsampalieros A, Lam CK, Spencer JC, Thayu M, Shults J, Zemel BS, et al. Long-term inflammation and glucocorticoid therapy impair skeletal modeling during growth in childhood Crohn disease. J Clin Endocrinol Metab. 2013;98:3438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106:988–98.

    Article  PubMed  Google Scholar 

  126. Werkstetter KJ, Schatz SB, Alberer M, Filipiak-Pittroff B, Koletzko S. Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn’s disease patients. Ann Nutr Metab. 2013;63:10–6.

    Article  CAS  PubMed  Google Scholar 

  127. Stagi S, Cavalli L, Bertini F, Matucci Cerinic M, Luisa Brandi M, Falcini F. Cross-sectional and longitudinal evaluation of bone mass and quality in children and young adults with juvenile onset systemic lupus erythematosus (JSLE): role of bone mass determinants analyzed by DXA, PQCT and QUS. Lupus. 2014;23:57–68.

    Article  CAS  PubMed  Google Scholar 

  128. Felin EMO, Prahalad S, Askew EW, Moyer-Mileur LJ. Musculoskeletal abnormalities of the tibia in juvenile rheumatoid arthritis. Arthritis Rheum. 2007;56:984–94.

    Article  PubMed  Google Scholar 

  129. Burnham JM, Shults J, Dubner SE, Sembhi H, Zemel BS, Leonard MB. Bone density, structure, and strength in juvenile idiopathic arthritis: importance of disease severity and muscle deficits. Arthritis Rheum. 2008;58:2518–27.

    Google Scholar 

  130. Roth J, Linge M, Tzaribachev N, Schweizer R, Kuemmerle-Deschner J. Musculoskeletal abnormalities in juvenile idiopathic arthritis—a 4-year longitudinal study. Rheumatology (Oxford). 2007;46:1180–4.

    Article  CAS  Google Scholar 

  131. Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum. 2004;50:1277–85.

    Article  PubMed  Google Scholar 

  132. Daniel V, Trautmann Y, Konrad M, Nayir A, Scharer K. T-lymphocyte populations, cytokines and other growth factors in serum and urine of children with idiopathic nephrotic syndrome. Clin Nephrol. 1997;47:289–97.

    CAS  PubMed  Google Scholar 

  133. Tsampalieros A, Gupta P, Denburg MR, Shults J, Zemel BS, Mostoufi-Moab S, et al. Glucocorticoid effects on changes in bone mineral density and cortical structure in childhood nephrotic syndrome. J Bone Miner Res. 2013;28:480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Terpstra AM, Kalkwarf HJ, Shults J, Zemel BS, Wetzsteon RJ, Foster BJ, et al. Bone density and cortical structure after pediatric renal transplantation. J Am Soc Nephrol. 2012;23:715–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Foster BJ, Shults J, Zemel BS, Leonard MB. Interactions between growth and body composition in children treated with high-dose chronic glucocorticoids. Am J Clin Nutr. 2004;80:1334–41.

    CAS  PubMed  Google Scholar 

  136. Lee DY, Wetzsteon RJ, Zemel BS, Shults J, Organ JM, Foster BJ, et al. Muscle torque relative to cross-sectional area and the functional muscle-bone unit in children and adolescents with chronic disease. J Bone Miner Res. 2015;30:575–83.

    Google Scholar 

  137. Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab. 2012;97:3584–92.

    Google Scholar 

  138. Tsampalieros A, Griffin L, Terpstra AM, Kalkwarf HJ, Shults J, Foster BJ, et al. Changes in DXA and quantitative CT measures of musculoskeletal outcomes following pediatric renal transplantation. Am J Transplant. 2014;14:124–32.

    Article  CAS  PubMed  Google Scholar 

  139. Mostoufi-Moab S, Ginsberg JP, Bunin N, Zemel B, Shults J, Leonard MB. Bone density and structure in long-term survivors of pediatric allogeneic hematopoietic stem cell transplantation. J Bone Miner Res. 2012;27:760–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather M. Macdonald Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Macdonald, H.M., McKay, H.A., Leonard, M.B. (2016). Lessons Learned from Clinical Research Using QCT, pQCT, and HR-pQCT. In: Fung, E., Bachrach, L., Sawyer, A. (eds) Bone Health Assessment in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-30412-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30412-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30410-6

  • Online ISBN: 978-3-319-30412-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics