Skip to main content

Bone Mineral Density as a Predictor of Vertebral Fractures in Children and Adolescents

  • Chapter
  • First Online:
Bone Health Assessment in Pediatrics

Abstract

There has been significant progress in our understanding of the natural history of vertebral fractures and associated risk and protective factors in children with osteoporotic conditions in recent years. This knowledge has allowed us to develop logical approaches to the diagnosis, monitoring, and timing of intervention in this setting. Current treatment strategies are predicated upon monitoring at-risk children to identify and then treat early signs of vertebral collapse in those with less potential for spontaneous vertebral body reshaping (i.e. a secondary prevention approach). On the other hand, trials addressing primary prevention are needed for children with both a high likelihood of developing vertebral fractures and with persistent risk factors for vertebral fractures (thereby obviating the potential for spontaneous vertebral body reshaping). Bone mineral density provides important, adjuvant information about the child’s overall bone health trajectory, signaling a child who is at increased risk for vertebral fractures or who is showing signs of spontaneous recovery from a transient bone health threat.

Overall, this chapter focuses on the following aspects of the pediatric bone health assessment: (a) vertebral fractures as a manifestation of osteoporosis in children (diagnostic methods, prevalence, and incidence in various disease states), (b) clinical predictors of vertebral fractures, including BMD, (c) BMD restitution and vertebral body reshaping of previously fractured vertebral bodies as indices of recovery, and (d) the impact of the relationship between BMD and vertebral fractures on clinical practice. Taken together, these discussion points will assist clinicians in the diagnosis and monitoring of bone health in at-risk children, and in making decisions around optimal candidates for bone-targeted treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABQ:

Algorithm-based qualitative method

ALL:

Acute lymphoblastic leukemia

BMD:

Bone mineral density

CT:

Computed tomography

DMD:

Duchenne muscular dystrophy

DXA:

Dual energy X-ray absorptiometry

GC:

Glucocorticoid(s)

LS:

Lumbar spine

MRI:

Magnetic resonance imaging

OI:

Osteogenesis imperfecta

SDI:

Spinal deformity index

VF:

Vertebral fracture(s)

VFA:

Vertebral fracture assessment

References

  1. Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, Shenouda N, Lentle B, Abish S, Atkinson S, Cairney E, Dix D, Israels S, Stephure D, Wilson B, Hay J, Moher D, Rauch F, Siminoski K, Ward LM, The Canadian STOPP Consortium. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) research program. J Bone Miner Res. 2009;24:1326–34.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thearle M, Horlick M, Bilezikian JP, Levy J, Gertner JM, Levine LS, Harbison M, Berdon W, Oberfield SE. Osteoporosis: an unusual presentation of childhood Crohn’s disease. J Clin Endocrinol Metab. 2000;85:2122–6.

    CAS  PubMed  Google Scholar 

  3. Eastell R, Cedel SL, Wahner HW, Riggs BL, Melton 3rd LJ. Classification of vertebral fractures. J Bone Miner Res. 1991;6:207–15.

    Article  CAS  PubMed  Google Scholar 

  4. McCloskey EV, Spector TD, Eyres KS, Fern ED, O’Rourke N, Vasikaran S, Kanis JA. The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int. 1993;3:138–47.

    Article  CAS  PubMed  Google Scholar 

  5. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8:1137–48.

    Article  CAS  PubMed  Google Scholar 

  6. Kerkeni S, Kolta S, Fechtenbaum J, Roux C. Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int. 2009;20:1547–52.

    Article  CAS  PubMed  Google Scholar 

  7. Rea JA, Chen MB, Li J, Blake GM, Steiger P, Genant HK, Fogelman I. Morphometric X-ray absorptiometry and morphometric radiography of the spine: a comparison of prevalent vertebral deformity identification. J Bone Miner Res. 2000;15:564–74.

    Article  CAS  PubMed  Google Scholar 

  8. Vallarta-Ast N, Krueger D, Wrase C, Agrawal S, Binkley N. An evaluation of densitometric vertebral fracture assessment in men. Osteoporos Int. 2007;18:1405–10.

    Article  CAS  PubMed  Google Scholar 

  9. Wu C, van Kuijk C, Li J, Jiang Y, Chan M, Countryman P, Genant HK. Comparison of digitized images with original radiography for semiquantitative assessment of osteoporotic fractures. Osteoporos Int. 2000;11:25–30.

    Article  PubMed  Google Scholar 

  10. Siminoski K, Lee KC, Jen H, Warshawski R, Matzinger MA, Shenouda N, Charron M, Coblentz C, Dubois J, Kloiber R, Nadel H, O’Brien K, Reed M, Sparrow K, Webber C, Lentle B, Ward LM. Anatomical distribution of vertebral fractures: comparison of pediatric and adult spines. Osteoporos Int. 2012;23:1999–2008.

    Article  CAS  PubMed  Google Scholar 

  11. LeBlanc C, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, Lang B, Huber AM, Houghton K, Jaremko J, Ho J, Shenouda N, Matzinger M, Lentle B, Stein R, Sbrocchi A, Oen K, Rodd C, Jurencak R, Cummings E, Couch R, Cabral D, Atkinson S, Alos N, Rauch F, Siminoski K, Ward LM, Canadian STOPP Consortium. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30:1667–75.

    Google Scholar 

  12. Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, Abish S, Atkinson S, Barr R, Cabral DA, Cairney E, Couch R, Dix DB, Fernandez CV, Hay J, Israels S, Laverdiere C, Lentle B, Lewis V, Matzinger M, Rodd C, Shenouda N, Stein R, Stephure D, Taback S, Wilson B, Williams K, Rauch F, Siminoski K, Ward LM. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30:2760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cummings E A, Ma J, Fernandez CV, Halton J, Alos N, Miettunen PM, Jaremko JL, Ho J, Shenouda N, Matzinger M, Lentle B, Stephure D, Stein R, Sbrocchi AM, Rodd C, Lang B, Israels S, Grant RM, Couch R, Barr R, Hay J, Rauch F, Siminoski K, Ward LM, The Canadian STOPP Consortium. Incident vertebral fractures in children with leukemia during the four years following diagnosis. J Clin Endocrinol Metab. 2015. J Clin Endocrinol Metab. 2015;100:3408–17.

    Google Scholar 

  14. Gaca AM, Barnhart HX, Bisset 3rd GS. Evaluation of wedging of lower thoracic and upper lumbar vertebral bodies in the pediatric population. Am J Roentgenol. 2010;194:516–20.

    Article  Google Scholar 

  15. Ebel KD, Blickman H, Willich E, Richter E. Abnormalities in vertebral body shape and size. In: Differential diagnosis in pediatric radiology. New York: Thieme Publishers; 1999.

    Google Scholar 

  16. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, Makitie O, Munns CF, Shaw N. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17:275–80.

    Article  PubMed  Google Scholar 

  17. Jiang G, Eastell R, Barrington NA, Ferrar L. Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int. 2004;15:887–96.

    Article  CAS  PubMed  Google Scholar 

  18. Jaremko JL, Siminoski K, Firth GB, Matzinger MA, Shenouda N, Konji VN, Roth J, Sbrocchi AM, Reed MH, O’Brien MK, Nadel H, McKillop S, Kloiber R, Dubois J, Coblentz C, Charron M, Ward LM. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study. Pediatr Radiol. 2015;45:593–605.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Genant HK, Jergas M, Palermo L, Nevitt M, Valentin RS, Black D, Cummings SR. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res. 1996;11:984–96.

    Article  CAS  PubMed  Google Scholar 

  20. Siminoski K, Lentle B, Matzinger MA, Shenouda N, Ward LM. Observer agreement in pediatric semiquantitative vertebral fracture diagnosis. Pediatr Radiol. 2014;44:457–66.

    Article  PubMed  Google Scholar 

  21. Buehring B, Krueger D, Checovich M, Gemar D, Vallarta-Ast N, Genant HK, Binkley N. Vertebral fracture assessment: impact of instrument and reader. Osteoporos Int. 2010;21:487–94.

    Article  CAS  PubMed  Google Scholar 

  22. Mayranpaa MK, Helenius I, Valta H, Mayranpaa MI, Toiviainen-Salo S, Makitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone. 2007;41:353–9.

    Article  PubMed  Google Scholar 

  23. Divasta AD, Feldman HA, Gordon CM. Vertebral fracture assessment in adolescents and young women with anorexia nervosa: a case series. J Clin Densitom. 2014;17:207–11.

    Article  PubMed  Google Scholar 

  24. Williams AL, Al-Busaidi A, Sparrow PJ, Adams JE, Whitehouse RW. Under-reporting of osteoporotic vertebral fractures on computed tomography. Eur J Radiol. 2009;69:179–83.

    Article  PubMed  Google Scholar 

  25. Kilpinen-Loisa P, Paasio T, Soiva M, Ritanen UM, Lautala P, Palmu P, Pihko H, Makitie O. Low bone mass in patients with motor disability: prevalence and risk factors in 59 Finnish children. Dev Med Child Neurol. 2010;52:276–82.

    Article  PubMed  Google Scholar 

  26. Feber J, Gaboury I, Ni A, Alos N, Arora S, Bell L, Blydt-Hansen T, Clarson C, Filler G, Hay J, Hebert D, Lentle B, Matzinger M, Midgley J, Moher D, Pinsk M, Rauch F, Rodd C, Shenouda N, Siminoski K, Ward LM. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int. 2012;23:751–60.

    Article  CAS  PubMed  Google Scholar 

  27. Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, Taback S, Dent P, Ellsworth J, LeBlanc C, Saint-Cyr C, Scuccimarri R, Hay J, Lentle B, Matzinger M, Shenouda N, Moher D, Rauch F, Siminoski K, Ward LM. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken). 2010;62:516–26.

    Article  CAS  Google Scholar 

  28. Phan V, Blydt-Hansen T, Feber J, Alos N, Arora S, Atkinson S, Bell L, Clarson C, Couch R, Cummings EA, Filler G, Grant RM, Grimmer J, Hebert D, Lentle B, Ma J, Matzinger M, Midgley J, Pinsk M, Rodd C, Shenouda N, Stein R, Stephure D, Taback S, Williams K, Rauch F, Siminoski K, Ward LM. Skeletal findings in the first 12 months following initiation of glucocorticoid therapy for pediatric nephrotic syndrome. Osteoporos Int. 2014;25:627–37.

    Article  CAS  PubMed  Google Scholar 

  29. Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, Scuccimarri R, Miettunen PM, Roth J, Atkinson SA, Couch R, Cummings EA, Dent PB, Ellsworth J, Hay J, Houghton K, Jurencak R, Larche M, LeBlanc C, Oen K, Saint-Cyr C, Stein R, Stephure D, Taback S, Lentle B, Matzinger M, Shenouda N, Moher D, Rauch F, Siminoski K, Ward LM. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res (Hoboken). 2012;64:122–31.

    Article  Google Scholar 

  30. Cooper C, Shah S, Hand DJ, Adams J, Compston J, Davie M, Woolf A. Screening for vertebral osteoporosis using individual risk factors. The Multicentre Vertebral Fracture Study Group. Osteoporos Int. 1991;2:48–53.

    Article  CAS  PubMed  Google Scholar 

  31. Burger H, Van Daele PL, Grashuis K, Hofman A, Grobbee DE, Schutte HE, Birkenhager JC, Pols HA. Vertebral deformities and functional impairment in men and women. J Bone Miner Res. 1997;12:152–7.

    Article  CAS  PubMed  Google Scholar 

  32. Nevitt MC, Ettinger B, Black DM, Stone K, Jamal SA, Ensrud K, Segal M, Genant HK, Cummings SR. The association of radiographically detected vertebral fractures with back pain and function: a prospective study. Ann Intern Med. 1998;128:793–800.

    Article  CAS  PubMed  Google Scholar 

  33. Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301:513–21.

    Article  CAS  PubMed  Google Scholar 

  34. Marini JC, Reich A, Smith SM. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr. 2014;26:500–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ben Amor IM, Roughley P, Glorieux FH, Rauch F. Skeletal clinical characteristics of osteogenesis imperfecta caused by haploinsufficiency mutations in COL1A1. J Bone Miner Res. 2013;28:2001–7.

    Article  CAS  PubMed  Google Scholar 

  36. Rauch F, Lalic L, Roughley P, Glorieux FH. Relationship between genotype and skeletal phenotype in children and adolescents with osteogenesis imperfecta. J Bone Miner Res. 2010;25:1367–74.

    CAS  PubMed  Google Scholar 

  37. van der Sluis IM, van den Heuvel-Eibrink MM, Hahlen K, Krenning EP, de Muinck Keizer-Schrama SM. Altered bone mineral density and body composition, and increased fracture risk in childhood acute lymphoblastic leukemia. J Pediatr. 2002;141:204–10.

    Article  PubMed  Google Scholar 

  38. Pui CH, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    Article  CAS  PubMed  Google Scholar 

  39. Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, Shults J, Leonard MB. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab. 2012;97:3584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mandel K, Atkinson S, Barr RD, Pencharz P. Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol. 2004;22:1215–21.

    Article  PubMed  Google Scholar 

  41. Riccio I, Marcarelli M, Del Regno N, Fusco C, Di Martino M, Savarese R, Gualdiero G, Oreste M, Indolfi C, Porpora G, Esposito M, Casale F, Riccardi G. Musculoskeletal problems in pediatric acute leukemia. J Pediatr Orthop B. 2013;22:264–9.

    Article  PubMed  Google Scholar 

  42. Baty JM, Vogt EC. Bone changes of leukemia in children. Am J Roentgenol. 1935;34:310–3.

    Google Scholar 

  43. Willson JK. The bone lesions of childhood leukemia; a survey of 140 cases. Radiology. 1959;72:672–81.

    Article  CAS  PubMed  Google Scholar 

  44. Simmons CR, Harle TS, Singleton EB. The osseous manifestations of leukemia in children. Radiol Clin North Am. 1968;6:115–30.

    CAS  PubMed  Google Scholar 

  45. Rogalsky RJ, Black GB, Reed MH. Orthopaedic manifestations of leukemia in children. J Bone Joint Surg. 1986;68-A:494–501.

    Google Scholar 

  46. Silverman FN. The skeletal lesions in leukemia; clinical and roentgenographic observations in 103 infants and children, with a review of the literature. Am J Roentgenol Radium Ther. 1948;59:819–44.

    CAS  PubMed  Google Scholar 

  47. Halton JM, Atkinson SA, Fraher L, Webber CE, Cockshott WP, Tam C, Barr RD. Mineral homeostasis and bone mass at diagnosis in children with acute lymphoblastic leukemia. J Pediatr. 1995;126:557–64.

    Article  CAS  PubMed  Google Scholar 

  48. Jayanthan A, Miettunen PM, Incoronato A, Ortiz-Neira CL, Lewis VA, Anderson R, Frohlich DE, Narendran A. Childhood acute lymphoblastic leukemia (ALL) presenting with severe osteolysis: a model to study leukemia-bone interactions and potential targeted therapeutics. Pediatr Hematol Oncol. 2010;27:212–27.

    Article  CAS  PubMed  Google Scholar 

  49. Regio P, Bonfa E, Takayama L, Pereira R. The influence of lean mass in trabecular and cortical bone in juvenile onset systemic lupus erythematosus. Lupus. 2008;17:787–92.

    Article  PubMed  Google Scholar 

  50. Nakhla M, Scuccimarri R, Duffy KN, Chedeville G, Campillo S, Duffy CM, Azouz EM, Shenouda N, Sharma AK, Rodd C. Prevalence of vertebral fractures in children with chronic rheumatic diseases at risk for osteopenia. J Pediatr. 2009;154:438–43.

    Article  PubMed  Google Scholar 

  51. Valta H, Lahdenne P, Jalanko H, Aalto K, Makitie O. Bone health and growth in glucocorticoid-treated patients with juvenile idiopathic arthritis. J Rheumatol. 2007;34:831–6.

    PubMed  Google Scholar 

  52. Burnham JM, Shults J, Weinstein R, Lewis JD, Leonard MB. Childhood onset arthritis is associated with an increased risk of fracture: a population based study using the General Practice Research Database. Ann Rheum Dis. 2006;65:1074–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Varonos S, Ansell BM, Reeve J. Vertebral collapse in juvenile chronic arthritis: its relationship with glucocorticoid therapy. Calcif Tissue Int. 1987;41:75–8.

    Article  CAS  PubMed  Google Scholar 

  54. Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20:71–4.

    CAS  PubMed  Google Scholar 

  55. McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, Jardine P, Jones DH, Pike MG. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44:695–8.

    Article  PubMed  Google Scholar 

  56. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, Mendell JR, Kissel JT. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68:1607–13.

    Article  CAS  PubMed  Google Scholar 

  57. Mughal MZ. Fractures in children with cerebral palsy. Curr Osteoporos Rep. 2014;12:313–8.

    Article  PubMed  Google Scholar 

  58. Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18:1319–28.

    Article  CAS  PubMed  Google Scholar 

  59. Teeninga N, Kist-van Holthe JE, van den Akker EL, Kersten MC, Boersma E, Krabbe HG, Knoers NV, van der Heijden AJ, Koper JW, Nauta J. Genetic and in vivo determinants of glucocorticoid sensitivity in relation to clinical outcome of childhood nephrotic syndrome. Kidney Int. 2014;85:1444–53.

    Article  CAS  PubMed  Google Scholar 

  60. Valta H, Jalanko H, Holmberg C, Helenius I, Makitie O. Impaired bone health in adolescents after liver transplantation. Am J Transplant. 2008;8:150–7.

    CAS  PubMed  Google Scholar 

  61. Okajima H, Shigeno C, Inomata Y, Egawa H, Uemoto S, Asonuma K, Kiuchi T, Konishi J, Tanaka K. Long-term effects of liver transplantation on bone mineral density in children with end-stage liver disease: a 2-year prospective study. Liver Transpl. 2003;9:360–4.

    Article  PubMed  Google Scholar 

  62. Helenius I, Remes V, Salminen S, Valta H, Makitie O, Holmberg C, Palmu P, Tervahartiala P, Sarna S, Helenius M, Peltonen J, Jalanko H. Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J Bone Miner Res. 2006;21:380–7.

    Article  PubMed  Google Scholar 

  63. Hill SA, Kelly DA, John PR. Bone fractures in children undergoing orthotopic liver transplantation. Pediatr Radiol. 1995;25 Suppl 1:S112–7.

    PubMed  Google Scholar 

  64. Shneider BL, Neimark E, Frankenberg T, Arnott L, Suchy FJ, Emre S. Critical analysis of the pediatric end-stage liver disease scoring system: a single center experience. Liver Transpl. 2005;11:788–95.

    Article  PubMed  Google Scholar 

  65. Bales CB, Kamath BM, Munoz PS, Nguyen A, Piccoli DA, Spinner NB, Horn D, Shults J, Leonard MB, Grimberg A, Loomes KM. Pathologic lower extremity fractures in children with Alagille syndrome. J Pediatr Gastroenterol Nutr. 2010;51:66–70.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klein GL, Soriano H, Shulman RJ, Levy M, Jones G, Langman CB. Hepatic osteodystrophy in chronic cholestasis: evidence for a multifactorial etiology. Pediatr Transplant. 2002;6:136–40.

    Article  PubMed  Google Scholar 

  67. D'Antiga L, Moniz C, Buxton-Thomas M, Cheeseman P, Gray B, Abraha H, Baker AJ, Heaton ND, Rela M, Mieli-Vergani G, Dhawan A. Bone mineral density and height gain in children with chronic cholestatic liver disease undergoing transplantation. Transplantation. 2002;73:1788–93.

    Article  PubMed  Google Scholar 

  68. Valta H, Makitie O, Ronnholm K, Jalanko H. Bone health in children and adolescents after renal transplantation. J Bone Miner Res. 2009;24:1699–708.

    Article  CAS  PubMed  Google Scholar 

  69. Vautour LM, Melton 3rd LJ, Clarke BL, Achenbach SJ, Oberg AL, McCarthy JT. Long-term fracture risk following renal transplantation: a population-based study. Osteoporos Int. 2004;15:160–7.

    Article  PubMed  Google Scholar 

  70. Ma J, Siminoski K, Alos N, Halton J, Ho J, Lentle B, Matzinger M, Shenouda N, Atkinson S, Barr R, Cabral DA, Couch R, Cummings EA, Fernandez CV, Grant RM, Rodd C, Sbrocchi AM, Scharke M, Rauch F, Ward LM. The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 2015;100:1018–27.

    Article  CAS  PubMed  Google Scholar 

  71. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25:520–6.

    Article  PubMed  Google Scholar 

  72. Marinovic D, Dorgeret S, Lescoeur B, Alberti C, Noel M, Czernichow P, Sebag G, Vilmer E, Leger J. Improvement in bone mineral density and body composition in survivors of childhood acute lymphoblastic leukemia: a 1-year prospective study. Pediatrics. 2005;116:e102–8.

    Article  PubMed  Google Scholar 

  73. Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, Lanctot JQ, Ojha RP, Nottage KA, Wilson CL, Li Z, Robison LL, Hudson MM. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2014;61:1270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies LR, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol. 2013;168:281–8.

    Article  CAS  PubMed  Google Scholar 

  75. Pandya NA, Meller ST, MacVicar D, Atra AA, Pinkerton CR. Vertebral compression fractures in acute lymphoblastic leukaemia and remodelling after treatment. Arch Dis Child. 2001;85:492–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ward LM. Bone mass effects and fracture risk in children receiving glucocorticoid therapy—steroid-induced osteoporosis in the pediatric population—Canadian incidence study. E-PAS 2015:268OA: invited symposium, Pediatric Academic Sciences Annual Meeting, Vancouver, BC; 2014.

    Google Scholar 

Download references

Acknowledgements

Dr. Ward has been supported by a CIHR New Investigator Award (2004–2009), by a Canadian Child Health Clinician Scientist Career Enhancement Award (2007–2010), by a University of Ottawa Research Chair Award (2011 to current) and by the Children’s Hospital of Eastern Ontario Department of Surgery, Division of Orthopedics (2009 to current). Dr. Ma is supported by the Children’s Hospital of Eastern Ontario Research Institute. Drs. Ward and Ma would like to thank Victor Konji for his support in carrying out literature searches and preparing figures for this chapter and Poppy DesClouds and Liz Sykes for editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leanne M. Ward M.D., F.A.A.P., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ward, L.M., Ma, J. (2016). Bone Mineral Density as a Predictor of Vertebral Fractures in Children and Adolescents. In: Fung, E., Bachrach, L., Sawyer, A. (eds) Bone Health Assessment in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-30412-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30412-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30410-6

  • Online ISBN: 978-3-319-30412-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics