Skip to main content

Rationale for Bone Health Assessment in Childhood and Adolescence

  • Chapter
  • First Online:
Bone Health Assessment in Pediatrics

Abstract

Skeletal health in childhood and adolescence influences the lifetime risk of bone fragility. Peak bone mass (PBM) reached by early adulthood serves at the “bone bank” for life. For this reason, optimizing bone acquisition in the first two decades can help prevent osteoporosis. Genetic factors determine an estimated 60–80 % of variability in PBM; hormones and nutrition, activity, and other modifiable factors account for the remainder. The expected gains in bone mass and size during the critical growing years can be compromised by several heritable or acquired disorders. Recognizing and addressing threats to bone health are essential to reducing the risk of bone fragility. Bone densitometry is a valuable noninvasive means to identify those at greatest risk for fracture. Although several new methods for assessing bone mass and geometry have evolved in recent years, dual energy x-ray absorptiometry (DXA) remains the recommended densitometry device for clinical use in pediatrics. The availability of robust pediatric normative data and creation of expert guidelines for pediatric densitometry have made DXA an even more valuable diagnostic tool. This book will highlight the clinical utility of DXA for pediatrics including the rationale for when and how to employ it. The overarching goal of this book is to serve as a resource for those acquiring, interpreting, reporting, and utilizing densitometry in pediatric patients. The purpose of this chapter is to review the acquisition of PBM in health and disease and briefly summarize the potential and limitation of bone densitometry in monitoring skeletal development in the growing patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73:555–63.

    Article  CAS  PubMed  Google Scholar 

  2. Faulkner RA, Bailey DA, Drinkwater DT, McKay HA, Arnold C, Wilkinson AA. Bone densitometry in Canadian children 8–17 years of Age. Calcif Tissue Int. 1996;59:344–51.

    Article  CAS  PubMed  Google Scholar 

  3. Katzman DK, Bachrach LK, Carter DR, Marcus R. Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab. 1991;73:1332–9.

    Article  CAS  PubMed  Google Scholar 

  4. Theintz G, Buchs B, Rizzoli R, et al. Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab. 1992;75:1060–5.

    CAS  PubMed  Google Scholar 

  5. Glorieux FH, Pettifor JM, Jüppner H, editors. Pediatric bone: biology and diseases. London: Academic; 2012.

    Google Scholar 

  6. Bonjour JP, Theintz G, Law F, Slosman D, Rizzoli R. Peak bone mass. Osteoporos Int. 1994;4 Suppl 1:7–13.

    Article  PubMed  Google Scholar 

  7. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14:1672–9.

    Google Scholar 

  8. Bass S, Delmas PD, Pearce G, Hendrich E, Tabensky A, Seeman E. The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clin Invest. 1999;104:795–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chevalley T, Bonjour JP, Ferrari S, Hans D, Rizzoli R. Skeletal site selectivity in the effects of calcium supplementation on areal bone mineral density gain: a randomized, double-blind, placebo-controlled trial in prepubertal boys. J Clin Endocrinol Metab. 2005;90:3342–9.

    Article  CAS  PubMed  Google Scholar 

  10. Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C. Peak bone mass. Osteoporos Int. 2000;11:985–1009.

    Article  CAS  PubMed  Google Scholar 

  11. Bachrach LK. Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab. 2001;12:22–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bailey DA, Martin AD, McKay HA, Whiting S, Mirwald R. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15:2245–50.

    Article  CAS  PubMed  Google Scholar 

  13. Whiting SJ, Vatanparast H, Baxter-Jones A, Faulkner RA, Mirwald R, Bailey DA. Factors that affect bone mineral accrual in the adolescent growth spurt. J Nutr. 2004;134:696S–700.

    PubMed  Google Scholar 

  14. Khosla S, Melton III LJ, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL. Incidence of childhood distal forearm fractures over 30 years: a population-based study. JAMA. 2003;290:1479–85.

    Article  CAS  PubMed  Google Scholar 

  15. Faulkner RA, Davison KS, Bailey DA, Mirwald RL, Baxter-Jones AD. Size corrected BMD decreases during peak linear growth: implications for fracture incidence during adolescence. J Bone Miner Res. 2006;21:1864–70.

    Article  PubMed  Google Scholar 

  16. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton 3rd LJ, Riggs BL, Amin S, Müller R, Khosla S. Bone structure at the distal radius during adolescent growth. J Bone Miner Res. 2009;24:1033–42.

    Article  PubMed  Google Scholar 

  17. Bianchi ML. Osteoporosis in children and adolescents. Bone. 2007;41:486–95.

    Article  PubMed  Google Scholar 

  18. Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46:294–305.

    Article  PubMed  Google Scholar 

  19. Mora S, Goodman WG, Loro ML, Roe TF, Sayre J, Gilsanz V. Age-related changes in cortical and cancellous vertebral bone density in girls: assessment with quantitative CT. AJR Am J Roentgenol. 1994;162:405–9.

    Article  CAS  PubMed  Google Scholar 

  20. Trotter M, Hixon BB. Sequential changes in weight, density, and percentage ash weight of human skeleton from an early fetal period through old age. Anat Rec. 1974;179:1–18.

    Article  CAS  PubMed  Google Scholar 

  21. Gilsanz V, Gibbens DT, Carlson M, Boechat MI, Cann CE, Schulz EE. Peak trabecular vertebral density: a comparison of adolescent and adult females. Calcif Tissue Int. 1988;43:260–2.

    Article  CAS  PubMed  Google Scholar 

  22. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 2006;17:337–47.

    Article  PubMed  Google Scholar 

  23. Bonjour JP, Chevalley T, Rizzoli R, Ferrari S. Gene–environment interactions in the skeletal response to nutrition and exercise during growth. Med Sport Sci. 2007;51:64–80.

    Article  PubMed  Google Scholar 

  24. Davies JH, Evans BA, Gregory JW. Bone mass acquisition in healthy children. Arch Dis Child. 2005;90:373–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Eisman JA. Genetics of osteoporosis. Endocr Rev. 1999;20:788–804.

    Article  CAS  PubMed  Google Scholar 

  26. Pitukcheewanont P, Austin J, Chen P, Punyasavatsut N. Bone health in children and adolescents: risk factors for low bone density. Pediatr Endocrinol Rev. 2013;10:318–35.

    PubMed  Google Scholar 

  27. Jouanny P, Guillemin F, Kuntz C, Jeandel C, Pureel J. Environmental and genetic factors affecting bone mass: similarity of bone density among members of healthy families. Arthritis Rheum. 1995;38:61–7.

    Article  CAS  PubMed  Google Scholar 

  28. Albagha OME, Ralston SH. Genetic determinants of susceptibility to osteoporosis. Endocrinol Metab Clin N Am. 2003;32:65–81.

    Article  CAS  Google Scholar 

  29. Alam I, Padgett LR, Ichikawa S, Alkhouli M, Koller DL, Lai D, Peacock M, Xuei X, Foroud T, Edenberg HJ, Econs MJ. SIBLING family genes and bone mineral density: association and allele-specific expression in humans. Bone. 2014;64:166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Medina-Gomez C, Kemp JP, Estrada K, Eriksson J, Liu J, Reppe S, Evans DM, Heppe DH, Vandenput L, Herrera L, Ring SM, Kruithof CJ, Timpson NJ, Zillikens MC, Olstad OK, Zheng HF, Richards JB, St Pourcain B, Hofman A, Jaddoe VW, Smith GD, Lorentzon M, Gautvik KM, Uitterlinden AG, Brommage R, Ohlsson C, Tobias JH, Rivadeneira F. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 2012;8:e1002718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hopper JL, Green RM, Nowson CA, Young D, Sherwin AJ, Kaymakci B, Larkins RG, Wark JD. Genetic, common environment, and individual specific components of variance for bone mineral density in 10- to 26-year-old females: a twin study. Am J Epidemiol. 1998;147:17–29.

    Article  CAS  PubMed  Google Scholar 

  32. Ferrari S. Human genetics of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22:723–35.

    Article  CAS  PubMed  Google Scholar 

  33. Thakkinstian A, D'Este C, Eisman J, Nguyen T, Attia J. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res. 2004;19:419–28.

    Article  CAS  PubMed  Google Scholar 

  34. Grant SFA, Reid DM, Blake G, Herd R, Fogelman I, Ralston SH. Reduced bone density and osteoporosis associated with a polymorphic Sp2 binding site in the collagen type Ia1 gene. Nat Genet. 1996;14:203–5.

    Article  CAS  PubMed  Google Scholar 

  35. Shiraki M, Shiraki Y, Aoki C, Hosoi T, Inoue S, Kaneki M, Ouchi Y. Association of bone mineral density with apolipoprotein E phenotype. J Bone Miner Res. 1996;10:S436.

    Google Scholar 

  36. Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG, Genetic Factors for Osteoporosis (GEFOS) Consortium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41:1199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eisman JA, Kelly PJ, Morrison NA, Pocock NA, Yeoman R, Birmingham J, et al. Peak bone mass and osteoporosis prevention. Osteoporos Int. 1993;3 Suppl 1:56–60.

    Article  PubMed  Google Scholar 

  38. Seeman E, Tsalamandris C, Formica C. Peak bone mass, a growing problem? Int J Fertil Menopausal Stud. 1993;38 Suppl 2:77–82.

    PubMed  Google Scholar 

  39. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–9.

    Article  CAS  PubMed  Google Scholar 

  40. Holroyd C, Harvey N, Dennison E, Cooper C. Epigenetic influences in the developmental origins of osteoporosis. Osteoporos Int. 2012;23:401–10.

    Article  CAS  PubMed  Google Scholar 

  41. Harvey N, Dennison E, Cooper C. Osteoporosis: a lifecourse approach. J Bone Miner Res. 2014;29:1917–25.

    Article  PubMed  Google Scholar 

  42. Javaid MK, Crozier SR, Harvey NC, Gale CR, Dennison EM, Boucher BJ, Arden NK, Godfrey KM, Cooper C, Princess Anne Hospital Study Group. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet. 2006;367:36–43.

    Article  CAS  PubMed  Google Scholar 

  43. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C. Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res. 2005;57:582–6.

    Article  PubMed  Google Scholar 

  44. Javaid MK, Eriksson JG, Kajantie E, et al. Growth in childhood predicts hip fracture risk in later life. Osteoporos Int. 2011;22:69–73.

    Article  CAS  PubMed  Google Scholar 

  45. Inskip HM, Godfrey KM, Robinson SM, Law CM, Barker DJ, Cooper C, SWS Study Group. Cohort profile: the Southampton Women’s Survey. Int J Epidemiol. 2006;35:42–8.

    Article  PubMed  Google Scholar 

  46. Ay L, Jaddoe VW, Hofman A, et al. Foetal and postnatal growth and bone mass at 6 months: the Generation R Study. Clin Endocrinol (Oxf). 2011;74:181–90.

    Article  Google Scholar 

  47. Golden NH, Abrams SA, Committee on nutrition. Optimizing bone health in children and adolescents. Pediatrics. 2014;134:e1229–43.

    Article  PubMed  Google Scholar 

  48. Wosje KS, Specker BL. Role of calcium in bone health during childhood. Nutr Rev. 2000;58:253–68.

    Article  CAS  PubMed  Google Scholar 

  49. Ross AC, Taylor CL, Yaktine AL, Del Valle HB, Committee to Review Dietary Reference Intakes for Vitamin D and Calcium Food and Nutrition Board; Institute of Medicine, editors. Dietary reference intakes for calcium and vitamin D. Washington, DC: The National Academies Press; 2011. Available in PDF at http://www.nap.edu/catalog.php?record_id=13050. ISBN 978-0-309-16394-1.

  50. Hoppe C, Molgaard C, Michaelsen KF. Bone size and bone mass in 10-year-old Danish children: effect of current diet. Osteoporos Int. 2000;11:1024–30.

    Article  CAS  PubMed  Google Scholar 

  51. Ho SC, Leung PC, Swaminathan R, Chan C, Chan SS, Fan YK, Lindsay R. Determinants of bone mass in Chinese women aged 21–40 years. II. Pattern of dietary calcium intake and association with bone mineral density. Osteoporos Int. 1994;4:167–75.

    Article  CAS  PubMed  Google Scholar 

  52. Lee WT, Leung SS, Lui SS, Lau J. Relationship between long-term calcium intake and bone mineral content of children aged from birth to 5 years. Br J Nutr. 1993;70:235–48.

    Article  CAS  PubMed  Google Scholar 

  53. Zhu K, Du X, Greenfield H, Zhang Q, Ma G, Hu X, Fraser DR. Bone mass in Chinese premenarcheal girls: the roles of body composition, calcium intake and physical activity. Br J Nutr. 2004;92:985–93.

    Article  CAS  PubMed  Google Scholar 

  54. Kalkwarf HJ, Khoury JC, Lanphear BP. Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. Am J Clin Nutr. 2003;77:257–65.

    CAS  PubMed  Google Scholar 

  55. van der Pols JC, Gunnell D, Williams GM, Holly JM, Bain C, Martin RM. Childhood dairy and calcium intake and cardiovascular mortality in adulthood: 65-year follow-up of the Boyd Orr cohort. Heart. 2009;95:1600–6.

    Article  PubMed  CAS  Google Scholar 

  56. Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest. 1997;99:1287–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Johnston Jr CC, Miller JZ, Slemenda CW, Reister TK, Hui S, Christian JC, Peacock M. Calcium supplementation and increases in bone mineral density in children. N Engl J Med. 1992;327:82–7.

    Article  PubMed  Google Scholar 

  58. Cadogan J, Eastell R, Jones N, Barker ME. Milk intake and bone mineral acquisition in adolescent girls: randomised, controlled intervention trial. BMJ. 1997;315:1255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huncharek M, Muscat J, Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008;43:312–21.

    Article  CAS  PubMed  Google Scholar 

  60. Winzenberg T, Shaw K, Fryer J, Jones G. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ. 2006;333:775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bonjour JP, Chevalley T, Ammann P, Slosman D, Rizzoli R. Gain in bone mineral mass in prepubertal girls 3.5 years after discontinuation of calcium supplementation: a follow-up study. Lancet. 2001;358:1208–12.

    Article  CAS  PubMed  Google Scholar 

  62. Wyshak G, Frisch RE. Carbonated beverages, dietary calcium, the dietary calcium/phosphorous ratio, and bone fractures in girls and boys. J Adolesc Health. 1994;15:210–5.

    Article  CAS  PubMed  Google Scholar 

  63. Fitzpatrick L, Heaney RP. Got soda? J Bone Miner Res. 2003;18:1570–2.

    Article  CAS  PubMed  Google Scholar 

  64. Committee on Nutrition and the Council on Sports Medicine and Fitness. Sports drinks and energy drinks for children and adolescents: are they appropriate? Pediatrics. 2011;127:1182–9.

    Article  Google Scholar 

  65. Holick MF. Vitamin D, deficiency. N Engl J Med. 2007;357:266–81.

    Article  CAS  PubMed  Google Scholar 

  66. Lehtonen-Veromaa MK, Möttönen TT, Nuotio IO, Irjala KM, Leino AE, Viikari JS. Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr. 2002;76:1446–53.

    CAS  PubMed  Google Scholar 

  67. Andersen R, Molgaard C, Skovgaard LT, Brot C, Cashman KD, Chabros E, Charzewska J, Flynn A, Jakobsen J, Karkkainen M, Kiely M, Lamberg-Allardt C, Moreiras O, Natri AM, O'Brien M, Rogalska-Niedzwiedz M, Ovesen L. Teenage girls and elderly women living in northern Europe have low winter vitamin D status. Eur J Clin Nutr. 2005;59:533–41.

    Article  CAS  PubMed  Google Scholar 

  68. Cheng S, Tylavsky F, Kroger H, Karkkainen M, Lyytikainen A, Koistinen A, Mahonen A, Alen M, Halleen J, Vaananen K, Lamberg-Allardt C. Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr. 2003;78:485–92.

    CAS  PubMed  Google Scholar 

  69. Lapatsanis D, Moulas A, Cholevas V, Soukakos P, Papadopoulou ZL, Challa A. Vitamin D: a necessity for children and adolescents in Greece. Calcif Tissue Int. 2005;77:348–55.

    Article  CAS  PubMed  Google Scholar 

  70. Hintzpeter B, Scheidt-Nave C, Muller MJ, Schenk L, Mensink GB. Higher prevalence of vitamin D deficiency is associated with immigrant background among children and adolescents in Germany. J Nutr. 2008;138:1482–90.

    CAS  PubMed  Google Scholar 

  71. Ginty F, Cavadini C, Michaud PA, Burckhardt P, Baumgartner M, Mishra GD, Barclay DV. Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur J Clin Nutr. 2004;58:1257–65.

    Article  CAS  PubMed  Google Scholar 

  72. Gordon CM, DePeter KC, Feldman HA, Grace E, Emans SJ. Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med. 2004;158:531–7.

    Article  PubMed  Google Scholar 

  73. Looker AC, Dawson-Hughes B, Calvo MS, Gunter EW, Sahyoun NR. Serum 25-hydroxyvitamin D status of adolescents and adults in two seasonal subpopulations from NHANES III. Bone. 2002;30:771–7.

    Article  CAS  PubMed  Google Scholar 

  74. Dong Y, Pollock N, Stallmann-Jorgensen IS, et al. Low 25-hydroxyvitamin D levels in adolescents: race, season, adiposity, physical activity, and fitness. Pediatrics. 2010;125:1104–11.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Harel Z, Flanagan P, Forcier M, Harel D. Low vitamin D status among obese adolescents: prevalence and response to treatment. J Adolesc Health. 2011;48:448–52.

    Article  PubMed  Google Scholar 

  76. Turer CB, Lin H, Flores G. Prevalence of vitamin D deficiency among overweight and obese US children. Pediatrics. 2013;131(1):e152–61.

    Article  PubMed  Google Scholar 

  77. Cashman KD, Hill TR, Cotter AA, et al. Low vitamin D status adversely affects bone health parameters in adolescents. Am J Clin Nutr. 2008;87:1039–44.

    CAS  PubMed  Google Scholar 

  78. Sonneville KR, Gordon CM, Kocher MS, Pierce LM, Ramappa A, Field AE. Vitamin D, calcium, and dairy intakes and stress fractures among female adolescents. Arch Pediatr Adolesc Med. 2012;166:595–600.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Rizzoli R, Bonjour J-P. Dietary protein and bone health. J Bone Miner Res. 2004;19:527–31.

    Article  PubMed  Google Scholar 

  80. Bonjour JP, Schurch MA, Chevalley T, Ammann P, Rizzoli R. Protein intake, IGF-1 and osteoporosis. Osteoporos Int. 1997;7(Suppl3):S36–42.

    Article  PubMed  Google Scholar 

  81. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res. 2008;23:131–42.

    Article  CAS  PubMed  Google Scholar 

  82. Garn SM. The earlier gain and the later loss of cortical bone. Springfield, IL: C.C. Thomas; 1970.

    Google Scholar 

  83. Budek AZ, Hoppe C, Michaelsen KF, Molgaard C. High intake of milk, but not meat, decreases bone turnover in prepubertal boys after 7 days. Eur J Clin Nutr. 2007;61:957–62.

    Article  CAS  PubMed  Google Scholar 

  84. Dawson-Hughes B, Harris SS, Rasmussen HM, Dallal GE. Comparative effects of oral aromatic and branched-chain amino acids on urine calcium excretion in humans. Osteoporos Int. 2007;18:955–61.

    Article  CAS  PubMed  Google Scholar 

  85. Gueguen L, Pointillart A. The bioavailability of dietary calcium. J Am Coll Nutr. 2000;19:119S–36.

    Article  CAS  PubMed  Google Scholar 

  86. Black RE, Williams SM, Jones IE, Goulding A. Children who avoid drinking cow milk have low dietary calcium intakes and poor bone health. Am J Clin Nutr. 2002;76:675–80.

    CAS  PubMed  Google Scholar 

  87. Jensen VB, Jorgensen IM, Rasmussen KB, Molgaard C, Prahl P. Bone mineral status in children with cow milk allergy. Pediatr Allergy Immunol. 2004;15:562–5.

    Article  PubMed  Google Scholar 

  88. Rockell JE, Williams SM, Taylor RW, Grant AM, Jones IE, Goulding A. Two-year changes in bone and body composition in young children with a history of prolonged milk avoidance. Osteoporos Int. 2005;16:1016–23.

    Article  CAS  PubMed  Google Scholar 

  89. Goulding A, Rockell JE, Black RE, Grant AM, Jones IE, Williams SM. Children who avoid drinking cow's milk are at increased risk for prepubertal bone fractures. J Am Diet Assoc. 2004;104:250–3.

    Article  PubMed  Google Scholar 

  90. Konstantynowicz J, Nguyen TV, Kaczmarski M, Jamiolkowski J, Piotrowska-Jastrzebska J, Seeman E. Fractures during growth: potential role of a milk-free diet. Osteoporos Int. 2007;18:1601–7.

    Article  CAS  PubMed  Google Scholar 

  91. Matkovic V, Landoll JD, Badenhop-Stevens NE, Ha EY, Crncevic-Orlic Z, Li B, Goel P. Nutrition influences skeletal development from childhood to adulthood: a study of hip, spine, and forearm in adolescent females. J Nutr. 2004;134:701S–5.

    PubMed  Google Scholar 

  92. Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A: Discov Mol Cell Evol Biol. 2003;275:1081–101.

    Article  Google Scholar 

  93. Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50:309–14.

    Article  CAS  PubMed  Google Scholar 

  94. Salameh A, Dhein S. Effects of mechanical forces and stretch on intercellular gap junction coupling. Biochim Biophys Acta. 2013;1828:147–56.

    Article  CAS  PubMed  Google Scholar 

  95. Schnitzler CM. Childhood cortical porosity is related to microstructural properties of the bone-muscle junction. J Bone Miner Res. 2015;30:144–55.

    Article  PubMed  Google Scholar 

  96. Daly RM, Stenevi-Lundgren S, Linden C, Karlsson MK. Muscle determinants of bone mass, geometry and strength in prepubertal girls. Med Sci Sports Exerc. 2008;40:1135–41.

    Article  PubMed  Google Scholar 

  97. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985;37:411–7.

    Article  CAS  PubMed  Google Scholar 

  98. Khan K, McKay HA, Haapasalo H, Bennell KL, Forwood MR, Kannus P, Wark JD. Does childhood and adolescence provide a unique opportunity for exercise to strengthen the skeleton? J Sci Med Sport. 2000;3:150–64.

    Article  CAS  PubMed  Google Scholar 

  99. MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med. 2002;36:250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang P, Hamamura K, Yokota H. A brief review of bone adaptation to unloading. Genomics Proteomics Bioinformatics. 2008;6:4–7.

    Article  CAS  PubMed  Google Scholar 

  101. Meakin LB, Price JS, Lanyon LE. The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone. Front Endocrinol (Lausanne). 2014;5:154.

    Google Scholar 

  102. Lehtonen-Veromaa M, Mottonen T, Irjala K, Nuotio I, Leino A, Viikari J. A 1-year prospective study on the relationship between physical activity, markers of bone metabolism, and bone acquisition in peripubertal girls. J Clin Endocrinol Metab. 2000;85:3726–32.

    CAS  PubMed  Google Scholar 

  103. Nurmi-Lawton JA, Baxter-Jones AD, Mirwald RL, Bishop JA, Taylor P, Cooper C, New SA. Evidence of sustained skeletal benefits from impact-loading exercise in young females: a 3-year longitudinal study. J Bone Miner Res. 2004;19:314–22.

    Article  PubMed  Google Scholar 

  104. Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16:148–56.

    Article  CAS  PubMed  Google Scholar 

  105. Fuchs RK, Snow CM. Gains in hip bone mass from high-impact training are maintained: a randomized controlled trial in children. J Pediatr. 2002;141:357–62.

    Article  PubMed  Google Scholar 

  106. Gunter K, Baxter-Jones AD, Mirwald RL, Almstedt H, Fuchs RK, Durski S, Snow C. Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res. 2008;23:986–93.

    Article  PubMed  Google Scholar 

  107. Johannsen N, Binkley T, Englert V, Neiderauer G, Specker B. Bone response to jumping is site-specific in children: a randomized trial. Bone. 2003;33:533–9.

    Article  PubMed  Google Scholar 

  108. MacKelvie KJ, Khan KM, Petit MA, Janssen PA, McKay HA. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112, e447.

    Article  PubMed  Google Scholar 

  109. MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002;17:834–44.

    Article  CAS  PubMed  Google Scholar 

  110. McKay HA, Petit MA, Schutz RW, Prior JC, Barr SI, Khan KM. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000;136:156–62.

    Article  CAS  PubMed  Google Scholar 

  111. Weeks BK, Young CM, Beck BR. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and Girls: the POWER PE study. J Bone Miner Res. 2008;23:1002–11.

    Article  PubMed  Google Scholar 

  112. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40:14–27.

    Article  CAS  PubMed  Google Scholar 

  113. Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29:2161–81.

    Article  PubMed  Google Scholar 

  114. Nattiv A, Loucks AB, Manore MM, Sanborn CF, Sundgot-Borgen J, Warren MP, American College of Sports Medicine. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39:1867–82.

    Article  PubMed  Google Scholar 

  115. Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14:843–7.

    Article  CAS  PubMed  Google Scholar 

  116. Boyce AM, Gafni RI. Approach to the child with fractures. J Clin Endocrinol Metab. 2011;96:1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ma NS, Gordon CM. Pediatric osteoporosis: where are we now? J Pediatr. 2012;161:983–90.

    Article  PubMed  Google Scholar 

  118. Marini JC, Blissett AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98:3095–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hartikka H, Makitie O, Mannikko M, Doria AS, Daneman A, Cole WG, Ala-Kokko L, Sochett EB. Heterozygous mutation in the LDL receptor-related protein 5 (LRP5) gene are associated with primary osteoporosis in children. J Bone Miner Res. 2005;20:783–9.

    Article  CAS  PubMed  Google Scholar 

  120. Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol. 2013;9:522–36.

    Article  CAS  PubMed  Google Scholar 

  121. Tsampalieros A, Lam CKL, Spencer JC, Thayu M, Shults J, Zemel BS, Herskovitz RM, Baldassano RN, Leonard MB. Long term inflammation and glucocorticoid therapy impair skeletal modeling during growth in childhood Crohn disease. J Clin Endocrinol Metab. 2013;98:3438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ghishan FK, Kiela PR. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol. 2011;300:G101–201.

    Article  CAS  Google Scholar 

  123. Roux C. Osteoporosis in inflammatory joint diseases. Osteoporos Int. 2011;22:421–33.

    Article  CAS  PubMed  Google Scholar 

  124. Henderson RC, Karalla JA, Barrington JW, Abbas A, Stevenson RC. Longitudinal changes in bone density in children and adolescents with moderate to severe cerebral palsy. J Pediatr. 2005;146:769–75.

    Article  PubMed  Google Scholar 

  125. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, Mendell JR, Kissel JT. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68:1607–13.

    Article  CAS  PubMed  Google Scholar 

  126. Van der Sluis I, van den Heuvel-Eibrink MM. Osteoporosis in children with cancer. Pediatr Blood Cancer. 2008;50:474–8.

    Article  PubMed  Google Scholar 

  127. Mostoufi-Moab S, Halton J. Bone morbidity in childhood leukemia: epidemiology, mechanisms, diagnosis and treatment. Curr Osteoporos Rep. 2014;12:300–12.

    Google Scholar 

  128. Eberling PR. Approach to the patient with transplantation-related bone loss. J Clin Endocrinol Metab. 2009;94:1483–90.

    Article  CAS  Google Scholar 

  129. Sermet-Gaudelus I, Bianchi MLM, Garabedian M, Aris RM, Morton A, Hardin DS, Elkin SL, Compston JE, Conway SP, Castanet M, Wolfe S, Haworth CS. European cystic fibrosis bone mineralisation guidelines. J Cystic Fibrosis. 2011;10 Suppl 2:S16–23.

    Article  Google Scholar 

  130. Vogiatzi MG, Macklin EA, Fung EB, Cheung AM, Vichinsky E, Olivieri N, Kirby M, et al. Bone disease in thalassemia: a frequent and still unresolved problem. J Bone Miner Res. 2009;24:543–57.

    Article  PubMed  Google Scholar 

  131. Goulding A, Jones L, Taylor RW, Manning PJ, Williams SM. More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res. 2000;15:2011–8.

    Article  CAS  PubMed  Google Scholar 

  132. Farr JN, Khosla S, Achenbach SJ, Atkinson EJ, Kirmani S, McCready LK, Melton 3rd LF, Amin S. Diminished bone strength is observed in adult women and women who sustained a mild trauma distal forearm fracture during childhood. J Bone Miner Res. 2014;29:2193–202.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Baim S, Leonard MB, Bianchi M-L, Hans DB, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Pediatric Position Development Conference. J Clin Densitom. 2008;11:6–21.

    Article  PubMed  Google Scholar 

  134. Gordon CM, Leonard MB, Zemel BS. 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom. 2014;17:219–24.

    Article  PubMed  Google Scholar 

  135. Rubin KH, Friis-Holmberg T, Hermann AP, Abrahamsen B, Brixen K. Risk assessment tools to identify women with increased risk of osteoporotic fracture: complexity or simplicity? A systematic review. J Bone Miner Res. 2013;28:1701–17.

    Article  PubMed  Google Scholar 

  136. Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, Makitie O, Munns CF, Shaw N. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 Pediatric Official Positions. J Clin Densitom. 2014;17:275–80.

    Article  PubMed  Google Scholar 

  137. Jones IE, Williams SM, Dow N, Goulding A. How many children remain fracture-free during growth? A longitudinal study of children and adolescents participating in the Dunedin Multidisciplinary Health and Development. Osteoporos Int. 2002;13(12):990–5.

    Article  CAS  PubMed  Google Scholar 

  138. Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics. 2006;117:e291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kalkwarf HJ, Laor T, Bean JA. Facture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int. 2011;22:607–16.

    Article  CAS  PubMed  Google Scholar 

  140. Farr JN, Amin S, Melton 3rd LJ, et al. Bone strength and structural deficits in children and adolescents with a distal forearm fracture due to mild trauma. J Bone Miner Res. 2014;29:590–9.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Henderson RC, Gerglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescent with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25:520–6.

    Article  PubMed  Google Scholar 

  142. Halton J, Gaboury I, Grant R, et al. Advanced vertebral fracture among newly diagnosed children during treatment for acute lymphoblastic leukemia: results of the Canadian Steroid-Associated Osteoporosis in the Pediatric Population (STOPP) Research Program. J Bone Miner Res. 2009;24:1326–34.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Alos N, Grant RM, Ramsay T, et al. High incidence of vertebral fractures in children with actue lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30:2760–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tsampalieros A, Griffin L, Terpstra AM, Kalkwarf HJ, Shults J, Foster BJ, et al. Changes in DXA and quantitative CT measures of musculoskeletal outcomes following pediatric renal transplantation. Am J Transplant. 2014;14:124–32.

    Article  CAS  PubMed  Google Scholar 

  145. Rodd C, Lang B, Ramsay T, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64:122–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luisa Bianchi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bianchi, M.L., Sawyer, A.J., Bachrach, L.K. (2016). Rationale for Bone Health Assessment in Childhood and Adolescence. In: Fung, E., Bachrach, L., Sawyer, A. (eds) Bone Health Assessment in Pediatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-30412-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30412-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30410-6

  • Online ISBN: 978-3-319-30412-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics