Skip to main content

Simulation of Thermomechanical Behavior Subjected to Induction Hardening

  • Conference paper
  • First Online:
  • 838 Accesses

Part of the book series: Mathematics in Industry ((TECMI,volume 23))

Abstract

Induction hardening is one of the most important heat treatments of steel components. This paper presents a mathematical and numerical model developed for a coupled problem of Maxwell’s equations describing the electromagnetic fields, the balance of momentum which determines internal stresses and deformations resulting from thermoelasticity and phase transformation induced plasticity, a rate law to determine the distribution of different phases and the heat equation to determine the temperature distribution in the workpiece. The equations are solved using a finite element method. A good agreement between the simulation results and experiment performed to determine the deformation is observed. In addition, the distribution of residual stresses after the heat treatment is well predicted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fischer, F.D., Reisner, G., Werner, E., Tanaka, K., Cailletaud, G., Antretter, T.: A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16, 723–748 (2000)

    Article  MATH  Google Scholar 

  2. Hömberg, D.: A mathematical model for induction hardening including mechanical effects. Real World Appl. 5, 55–90 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hömberg, D., Liu, Q., Urquizo, J.M., Nadolski, D., Petzold, T., Schmidt, A., Schulz, A.: Simulation of multi-frequency-induction-hardening including phase transitions and mechanical effects. Weierstraß-Institut für Angewandte Analysis und Stochastik, Leibniz-Institut im Forschungsverbund Berlin e.V. (2014, preprint). ISSN 2198-5855

    Google Scholar 

  4. Mioković, T.: Analyse des Umwandlungsverhaltens bei ein- und mehrfacher Kurzzeithärtung bzw. Laserstrahlhärtung des Stahls 42CrMo4. Dissertation, Universität Karlsruhe, Shaker Verlag Aachen, Band 2005, 25 (2005) ISBN: 3-8322-4689-4, Erschienen: Dezember 2005

    Google Scholar 

  5. Schröder, R.: Untersuchung zur Spannungs- und Eigenspannungsausbildung beim Abschrecken von Stahlzylindern. Dissertation, University of Karlsruhe (1985)

    Google Scholar 

  6. Urquizo, J.M., Liu, Q., Schmidt, A.: Quenching simulation for the induction hardening process—Thermal and mechanical effects. Berichte aus der Technomathematik, University of Bremen (2013)

    Google Scholar 

  7. Urquizo, J.M., Liu, Q., Schmidt, A.: Simulation of quenching involved in induction hardening including mechanical effects. Comput. Mater. Sci. 79, 639–649 (2013)

    Article  Google Scholar 

  8. Visintin, A.: Mathematical models of solid-solid phase transitions in steel. IMA J. Appl. Math. 39, 143–157 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wolff, M., Böhm, M., Böttcher, S.: Phase transformations in steel in the multi-phase case - general modelling and parameter identification. Technical Report 07-02, Universität Bremen, Berichte aus der Technomathematik (2007)

    Google Scholar 

Download references

Acknowledgements

This research is a part of the project MeFreSim (Modeling, Simulation and Optimization of Multi-Frequency Induction Hardening) funded by Bundesministerium für Bildung und Forschung (BMBF). Furthermore we thank our industrial cooperation partners ZF Friedrichshafen AG and Dr. H. Stiele at EFD Induction GmbH for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhe Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, Q., Petzold, T., Nadolski, D., Pulch, R. (2016). Simulation of Thermomechanical Behavior Subjected to Induction Hardening. In: Bartel, A., Clemens, M., Günther, M., ter Maten, E. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry(), vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-30399-4_14

Download citation

Publish with us

Policies and ethics