Skip to main content

Abstract

In this contribution we consider a chain of two coupled Lagrange gyrostats moving about a fixed point in a non-homogeneous gravitational field and show the existence of the following stabilization effect: for a gyrostat that is in its unstable equilibrium position, there is another gyrostat such that, when the two of them are coupled to form this chain, the rotation of the latter gyrostat can be used to stabilize the equilibrium of the former one. We establish and analyze stabilization conditions in the space of mechanical parameters characterizing the chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beletsky, V.: The Motion of a Satellite About Its Centre of Mass in a Gravitational Field. Moscow University Press, Moscow (1975)

    Google Scholar 

  2. Chebanov, D.: Precessional motions of a chain of coupled gyrostats in a central Newtonian field. In: Proceedings of the ASME 2014 International Design and Engineering Technical Conferences (DETC2014), Buffalo (2014). Paper DETC2014-35590

    Google Scholar 

  3. Chebanov, D., Salas, J.: On permanent rotations of a system of two coupled gyrostats in a central Newtonian force field. In: Proceedings of the ASME 2015 International Design and Engineering Technical Conferences (DETC2015), Boston (2015). Paper DETC2015-47434

    Google Scholar 

  4. Gluhovsky, A.: Modeling turbulence by systems of coupled gyrostats. In: Fitzmaurice, N., Gurarie, D., McCaughan, F., Woyczynski, W. (eds.) Nonlinear Waves and Weak Turbulence. Progress in Nonlinear Differential Equations and Their Applications, vol. 11, pp. 179–197. Birkhäuser, Boston (1993)

    Google Scholar 

  5. Gluhovsky, A.: Energy-conserving and Hamiltonian low-order models in geophysical fluid dynamics. Nonlinear Proc. Geoph. 13 (2), 125–133 (2006)

    Article  MathSciNet  Google Scholar 

  6. Haken, H.: Analogy between higher instabilities in fluids and lasers. Phys. Lett. A 53 (1), 77–78 (1975)

    Article  MathSciNet  Google Scholar 

  7. Hemati, N.: Strange attractors in brushless DC motors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41 (1), 40–45 (1994)

    Article  Google Scholar 

  8. Hughes, P.: Spacecraft Attitude Dynamics. Wiley, New York (1986)

    Google Scholar 

  9. Lesina, M.: Stabilization of an unbalanced Lagrange gyroscope at rest. Mekh. Tverd. Tela 11, 88–92 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Li, Q., Wang, H.: Has Chaos implied by macrovariable equations been justified? Phys. Rev. E 58, 1191–1194 (1998)

    Article  Google Scholar 

  11. Lurie, A.: Analytical Mechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  12. Moiseyev, N., Rumyantsev, V.: Dynamic Stability of Bodies Containing Fluid. Springer, New York (1968)

    Book  MATH  Google Scholar 

  13. Rubanovskii, V.: On bifurcation and stability of stationary motions in certain problems of dynamics of a solid body. J. Appl. Math. Mech. 38 (4), 573–584 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rumyantsev, V.: On the stability of motion of gyrostats. J. Appl. Math. Mech. 25 (1), 9–19 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Savchenko, A., Bolgrabskaya, I., Kononyhin, G.: Stability of Motion of Systems of Coupled Rigid Bodies. Naukova Dumka, Kyiv (1991)

    Google Scholar 

  16. Starostin, E.: Three-dimensional shapes of looped DNA. Meccanica 31 (3), 235–271 (1996)

    Article  MATH  Google Scholar 

  17. Varkhalev, I., Savchenko, A., Svetlichnaya, N.: On the stabilization of an unbalanced Lagrange gyroscope at rest. Mekh. Tverd. Tela 14, 105–109 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Acknowledgements

Support for this project was provided by a PSC-CUNY Award, jointly funded by The Professional Staff Congress and The City University of New York (Award # 68091-00 46). The work of the second and third authors was supported by the NASA New York Space Grant CCPP Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Chebanov .

Editor information

Editors and Affiliations

Appendix

Appendix

The coefficients μ 6, μ 5, , μ 0 of \(\varLambda _{3}\) in (8) admit the following representation in terms of the dimensionless parameters κ 1, κ 2, κ 3, κ 4.

$$ \displaystyle\begin{array}{rcl} \mu _{6}& =& \kappa _{4}^{2} - 4, {}\\ \mu _{5}& =& -2\kappa _{4}\left [\left (\kappa _{1} - 2\kappa _{2}\left (1 +\kappa _{ 3}^{2}\right ) + 1\right )\kappa _{ 4}^{2} + 9\kappa _{ 2}\left (1 +\kappa _{ 3}^{2}\right ) - 2\left (2\kappa _{ 1} -\kappa _{2}\kappa _{3} + 2\right )\right ], {}\\ \mu _{4}& =& \left [8\kappa _{2}\kappa _{3}^{2}\left (2\kappa _{ 2} - 1\right ) +\kappa _{1}\left (\kappa _{1} - 8\kappa _{2} + 4\right ) + 1\right ]\kappa _{4}^{4} - 2\bigl [12\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 3\kappa _{ 1}\kappa _{2}\kappa _{3}^{2} {}\\ & & +40\kappa _{2}^{2}\kappa _{ 3}^{2} - 8\kappa _{ 1}\kappa _{2}\kappa _{3} + 12\kappa _{2}^{2}\kappa _{ 3} - 19\kappa _{2}\kappa _{3}^{2} +\kappa _{ 1}^{2} - 19\kappa _{ 1}\kappa _{2} - 8\kappa _{2}\kappa _{3} {}\\ & & +12\kappa _{1} + 3\kappa _{2} + 1\bigr ]\kappa _{4}^{2} - 27\kappa _{ 2}^{2}\kappa _{ 3}^{4} + 36\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 36\kappa _{ 1}\kappa _{2}\kappa _{3}^{2} - 2\kappa _{ 2}^{2}\kappa _{ 3}^{2} {}\\ & & -40\kappa _{1}\kappa _{2}\kappa _{3} + 36\kappa _{2}^{2}\kappa _{ 3} - 12\kappa _{2}\kappa _{3}^{2} - 8\kappa _{ 1}^{2} - 12\kappa _{ 1}\kappa _{2} - 27\kappa _{2}^{2} - 40\kappa _{ 2}\kappa _{3} {}\\ & & +32\kappa _{1} + 36\kappa _{2} - 8, {}\\ \mu _{3}& =& -2\kappa _{4}\bigl [\left (\kappa _{1}^{2} +\kappa _{ 1} - 2\kappa _{1}^{2}\kappa _{ 2} - 2\kappa _{2}\kappa _{3}^{2}\right )\kappa _{ 4}^{4} +\bigl ( 64\kappa _{ 2}^{3}\kappa _{ 3}^{3} + 8\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{2} - 40\kappa _{ 2}^{2}\kappa _{ 3}^{3} {}\\ & & +2\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} - 40\kappa _{1}\kappa _{2}^{2}\kappa _{ 3} + 7\kappa _{1}\kappa _{2}\kappa _{3}^{2} + 8\kappa _{ 2}^{2}\kappa _{ 3}^{2} +\kappa _{ 1}^{3} + 7\kappa _{ 1}^{2}\kappa _{ 2} + 24\kappa _{1}\kappa _{2}\kappa _{3} {}\\ & & +7\kappa _{2}\kappa _{3}^{2} - 9\kappa _{ 1}^{2} + 7\kappa _{ 1}\kappa _{2} + 2\kappa _{2}\kappa _{3} - 9\kappa _{1} + 1\bigr )\kappa _{4}^{2} + 48\kappa _{ 2}^{3}\kappa _{ 3}^{4} + 6\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{3} {}\\ & & -160\kappa _{2}^{3}\kappa _{ 3}^{3} - 18\kappa _{ 2}^{2}\kappa _{ 3}^{4} + 3\kappa _{ 1}^{2}\kappa _{ 2}\kappa _{3}^{2} - 38\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{2} + 48\kappa _{ 2}^{3}\kappa _{ 3}^{2} + 130\kappa _{ 2}^{2}\kappa _{ 3}^{3} {}\\ & & -2\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} + 130\kappa _{1}\kappa _{2}^{2}\kappa _{ 3} - 26\kappa _{1}\kappa _{2}\kappa _{3}^{2} - 38\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 4\kappa _{ 1}^{3} + 7\kappa _{ 1}^{2}\kappa _{ 2} {}\\ & & -18\kappa _{1}\kappa _{2}^{2} - 92\kappa _{ 1}\kappa _{2}\kappa _{3} + 6\kappa _{2}^{2}\kappa _{ 3} + 7\kappa _{2}\kappa _{3}^{2} + 20\kappa _{ 1}^{2} - 26\kappa _{ 1}\kappa _{2} - 2\kappa _{2}\kappa _{3} + 20\kappa _{1} {}\\ & & +3\kappa _{2} - 4\bigr ], {}\\ \mu _{2}& =& \kappa _{1}^{2}\kappa _{ 4}^{6} - 2\bigl (12\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} + 40\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{2} + 12\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 3\kappa _{ 1}^{3}\kappa _{ 2} - 8\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} {}\\ & & -19\kappa _{1}\kappa _{2}\kappa _{3}^{2} +\kappa _{ 1}^{3} + 38\kappa _{ 1}^{2}\kappa _{ 2} - 8\kappa _{1}\kappa _{2}\kappa _{3} + 3\kappa _{2}\kappa _{3}^{2} + 12\kappa _{ 1}^{2} +\kappa _{ 1}\bigr )\kappa _{4}^{4} {}\\ & & +\bigl (256\kappa _{2}^{4}\kappa _{ 3}^{4} - 64\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{3} - 320\kappa _{ 2}^{3}\kappa _{ 3}^{4} - 66\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 320\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{2} {}\\ & & +76\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{3} - 64\kappa _{ 2}^{3}\kappa _{ 3}^{3} - 2\kappa _{ 2}^{2}\kappa _{ 3}^{4} - 4\kappa _{ 1}^{3}\kappa _{ 2}\kappa _{3} + 76\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} + 40\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} {}\\ & & +696\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{2} + 76\kappa _{ 2}^{2}\kappa _{ 3}^{3} +\kappa _{ 1}^{4} + 40\kappa _{ 1}^{3}\kappa _{ 2} - 2\kappa _{1}^{2}\kappa _{ 2}^{2} - 108\kappa _{ 1}^{2}\kappa _{ 2}\kappa _{3} + 76\kappa _{1}\kappa _{2}^{2}\kappa _{ 3} {}\\ & & -192\kappa _{1}\kappa _{2}\kappa _{3}^{2} - 66\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 4\kappa _{ 1}^{3} - 192\kappa _{ 1}^{2}\kappa _{ 2} - 108\kappa _{1}\kappa _{2}\kappa _{3} + 40\kappa _{2}\kappa _{3}^{2} + 102\kappa _{ 1}^{2} {}\\ & & +40\kappa _{1}\kappa _{2} - 4\kappa _{2}\kappa _{3} - 4\kappa _{1} + 1\bigr )\kappa _{4}^{2} + 4\bigl (64\kappa _{ 2}^{4}\kappa _{ 3}^{5} - 24\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{4} - 128\kappa _{ 2}^{4}\kappa _{ 3}^{4} {}\\ & & -72\kappa _{2}^{3}\kappa _{ 3}^{5} - 6\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{3} - 56\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{3} + 36\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{4} + 64\kappa _{ 2}^{4}\kappa _{ 3}^{3} + 152\kappa _{ 2}^{3}\kappa _{ 3}^{4} {}\\ & & +\kappa _{1}^{3}\kappa _{ 2}\kappa _{3}^{2} + 40\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} + 152\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{2} + 52\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{3} - 56\kappa _{ 2}^{3}\kappa _{ 3}^{3} - 12\kappa _{ 2}^{2}\kappa _{ 3}^{4} {}\\ & & +6\kappa _{1}^{3}\kappa _{ 2}\kappa _{3} - 14\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} - 49\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} - 72\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3} - 192\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{2} - 24\kappa _{ 2}^{3}\kappa _{ 3}^{2} {}\\ & & -14\kappa _{2}^{2}\kappa _{ 3}^{3} -\kappa _{ 1}^{4} - 15\kappa _{ 1}^{3}\kappa _{ 2} - 12\kappa _{1}^{2}\kappa _{ 2}^{2} + 26\kappa _{ 1}^{2}\kappa _{ 2}\kappa _{3} + 52\kappa _{1}\kappa _{2}^{2}\kappa _{ 3} + 31\kappa _{1}\kappa _{2}\kappa _{3}^{2} {}\\ & & +40\kappa _{2}^{2}\kappa _{ 3}^{2} + 12\kappa _{ 1}^{3} + 31\kappa _{ 1}^{2}\kappa _{ 2} + 36\kappa _{1}\kappa _{2}^{2} + 26\kappa _{ 1}\kappa _{2}\kappa _{3} - 6\kappa _{2}^{2}\kappa _{ 3} - 15\kappa _{2}\kappa _{3}^{2} {}\\ & & -22\kappa _{1}^{2} - 49\kappa _{ 1}\kappa _{2} + 6\kappa _{2}\kappa _{3} + 12\kappa _{1} +\kappa _{2} - 1\bigr ), {}\\ \mu _{1}& =& -2\kappa _{4}\bigl [\left (9\kappa _{1}^{3}\kappa _{ 2} + 2\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} + 9\kappa _{1}\kappa _{2}\kappa _{3}^{2} - 4\kappa _{ 1}^{3} - 4\kappa _{ 1}^{2}\right )\kappa _{ 4}^{4} +\bigl ( 48\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{2} {}\\ & & -160\kappa _{1}\kappa _{2}^{3}\kappa _{ 3}^{3} + 48\kappa _{ 2}^{3}\kappa _{ 3}^{4} + 6\kappa _{ 1}^{3}\kappa _{ 2}^{2}\kappa _{ 3} - 38\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} + 130\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{3} - 18\kappa _{ 2}^{2}\kappa _{ 3}^{4} {}\\ & & +3\kappa _{1}^{4}\kappa _{ 2} - 18\kappa _{1}^{3}\kappa _{ 2}^{2} - 2\kappa _{ 1}^{3}\kappa _{ 2}\kappa _{3} + 130\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} + 7\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} - 38\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{2} {}\\ & & +6\kappa _{2}^{2}\kappa _{ 3}^{3} - 4\kappa _{ 1}^{4} - 26\kappa _{ 1}^{3}\kappa _{ 2} - 92\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} - 26\kappa _{1}\kappa _{2}\kappa _{3}^{2} + 20\kappa _{ 1}^{3} + 7\kappa _{ 1}^{2}\kappa _{ 2} + 3\kappa _{2}\kappa _{3}^{2} {}\\ & & -2\kappa _{1}\kappa _{2}\kappa _{3} + 20\kappa _{1}^{2} - 4\kappa _{ 1}\bigr )\kappa _{4}^{2} + 4\bigl (8\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{3} - 32\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{4} + 8\kappa _{ 2}^{3}\kappa _{ 3}^{5} + 2\kappa _{ 1}^{3}\kappa _{ 2}^{2}\kappa _{ 3}^{2} {}\\ & & -32\kappa _{1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{2} - 2\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 96\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{3} + 20\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{4} - 32\kappa _{ 2}^{3}\kappa _{ 3}^{4} - 13\kappa _{ 1}\kappa _{2}\kappa _{3}^{2} {}\\ & & -2\kappa _{1}^{3}\kappa _{ 2}^{2}\kappa _{ 3} - 3\kappa _{1}^{3}\kappa _{ 2}\kappa _{3}^{2} + 8\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3} + 54\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 32\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{2} - 92\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{3} {}\\ & & +8\kappa _{2}^{3}\kappa _{ 3}^{3} + 20\kappa _{ 2}^{2}\kappa _{ 3}^{4} - 3\kappa _{ 1}^{4}\kappa _{ 2} + 20\kappa _{1}^{3}\kappa _{ 2}^{2} - 4\kappa _{ 1}^{3}\kappa _{ 2}\kappa _{3} - 92\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} - 13\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} {}\\ & & +54\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{2} - 2\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 4\kappa _{ 1}^{4} - 13\kappa _{ 1}^{3}\kappa _{ 2} + 20\kappa _{1}^{2}\kappa _{ 2}^{2} + 72\kappa _{ 1}^{2}\kappa _{ 2}\kappa _{3} - 2\kappa _{1}\kappa _{2}^{2}\kappa _{ 3} {}\\ & & +2\kappa _{2}^{2}\kappa _{ 3}^{2} - 4\kappa _{ 1}^{3} - 13\kappa _{ 1}^{2}\kappa _{ 2} - 4\kappa _{1}\kappa _{2}\kappa _{3} - 3\kappa _{2}\kappa _{3}^{2} - 4\kappa _{ 1}^{2} - 3\kappa _{ 1}\kappa _{2} + 4\kappa _{1}\bigr )\bigr ], {}\\ \mu _{0}& =& -4\kappa _{1}^{3}\kappa _{ 4}^{6} +\bigl ( -27\kappa _{ 1}^{4}\kappa _{ 2}^{2} + 36\kappa _{ 1}^{3}\kappa _{ 2}^{2}\kappa _{ 3} - 2\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} + 36\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{3} - 27\kappa _{ 2}^{2}\kappa _{ 3}^{4} {}\\ & & +36\kappa _{1}^{4}\kappa _{ 2} - 40\kappa _{1}^{3}\kappa _{ 2}\kappa _{3} - 12\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} - 8\kappa _{ 1}^{4} - 12\kappa _{ 1}^{3}\kappa _{ 2} - 40\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} {}\\ & & +36\kappa _{1}\kappa _{2}\kappa _{3}^{2} + 32\kappa _{ 1}^{3} - 8\kappa _{ 1}^{2}\bigr )\kappa _{ 4}^{4} +\bigl ( 256\kappa _{ 1}^{2}\kappa _{ 2}^{4}\kappa _{ 3}^{3} - 512\kappa _{ 1}\kappa _{2}^{4}\kappa _{ 3}^{4} + 256\kappa _{ 2}^{4}\kappa _{ 3}^{5} {}\\ & & -96\kappa _{1}^{3}\kappa _{ 2}^{3}\kappa _{ 3}^{2} - 224\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{3} + 608\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{4} - 288\kappa _{ 2}^{3}\kappa _{ 3}^{5} - 24\kappa _{ 1}^{4}\kappa _{ 2}^{2}\kappa _{ 3} {}\\ & & -288\kappa _{1}^{3}\kappa _{ 2}^{3}\kappa _{ 3} + 160\kappa _{1}^{3}\kappa _{ 2}^{2}\kappa _{ 3}^{2} + 608\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{2} - 56\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{3} - 224\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{3} {}\\ & & -48\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{4} - 96\kappa _{ 2}^{3}\kappa _{ 3}^{4} + 4\kappa _{ 1}^{5}\kappa _{ 2} + 144\kappa _{1}^{4}\kappa _{ 2}^{2} + 24\kappa _{ 1}^{4}\kappa _{ 2}\kappa _{3} + 208\kappa _{1}^{3}\kappa _{ 2}^{2}\kappa _{ 3} {}\\ & & -60\kappa _{1}^{3}\kappa _{ 2}\kappa _{3}^{2} - 768\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} + 208\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{3} + 144\kappa _{ 2}^{2}\kappa _{ 3}^{4} - 4\kappa _{ 1}^{5} - 196\kappa _{ 1}^{4}\kappa _{ 2} {}\\ & & -48\kappa _{1}^{3}\kappa _{ 2}^{2} + 104\kappa _{ 1}^{3}\kappa _{ 2}\kappa _{3} - 56\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} + 124\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} + 160\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{2} - 24\kappa _{ 2}^{2}\kappa _{ 3}^{3} {}\\ & & +48\kappa _{1}^{4} + 124\kappa _{ 1}^{3}\kappa _{ 2} + 104\kappa _{1}^{2}\kappa _{ 2}\kappa _{3} - 196\kappa _{1}\kappa _{2}\kappa _{3}^{2} - 88\kappa _{ 1}^{3} - 60\kappa _{ 1}^{2}\kappa _{ 2} {}\\ & & +24\kappa _{1}\kappa _{2}\kappa _{3} + 4\kappa _{2}\kappa _{3}^{2} + 48\kappa _{ 1}^{2} - 4\kappa _{ 1}\bigr )\kappa _{4}^{2} + 256\kappa _{ 1}^{2}\kappa _{ 2}^{4}\kappa _{ 3}^{4} - 512\kappa _{ 1}\kappa _{2}^{4}\kappa _{ 3}^{5} {}\\ & & +256\kappa _{2}^{4}\kappa _{ 3}^{6} - 128\kappa _{ 1}^{3}\kappa _{ 2}^{3}\kappa _{ 3}^{3} - 512\kappa _{ 1}^{2}\kappa _{ 2}^{4}\kappa _{ 3}^{3} - 128\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{4} + 1024\kappa _{ 1}\kappa _{2}^{4}\kappa _{ 3}^{4} {}\\ & & +512\kappa _{1}\kappa _{2}^{3}\kappa _{ 3}^{5} - 512\kappa _{ 2}^{4}\kappa _{ 3}^{5} - 256\kappa _{ 2}^{3}\kappa _{ 3}^{6} + 16\kappa _{ 1}^{4}\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 128\kappa _{ 1}^{3}\kappa _{ 2}^{3}\kappa _{ 3}^{2} {}\\ & & +128\kappa _{1}^{3}\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 256\kappa _{ 1}^{2}\kappa _{ 2}^{4}\kappa _{ 3}^{2} + 1152\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{3} - 128\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{4} - 512\kappa _{ 1}\kappa _{2}^{4}\kappa _{ 3}^{3} {}\\ & & -1536\kappa _{1}\kappa _{2}^{3}\kappa _{ 3}^{4} + 256\kappa _{ 2}^{4}\kappa _{ 3}^{4} + 512\kappa _{ 2}^{3}\kappa _{ 3}^{5} + 128\kappa _{ 1}^{4}\kappa _{ 2}^{2}\kappa _{ 3} - 16\kappa _{1}^{4}\kappa _{ 2}\kappa _{3}^{2} {}\\ & & +512\kappa _{1}^{3}\kappa _{ 2}^{3}\kappa _{ 3} - 64\kappa _{1}^{3}\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 1536\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3}^{2} - 640\kappa _{ 1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{3} + 1152\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{3} {}\\ & & +512\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{4} - 128\kappa _{ 2}^{3}\kappa _{ 3}^{4} - 16\kappa _{ 1}^{5}\kappa _{ 2} - 128\kappa _{1}^{4}\kappa _{ 2}^{2} - 128\kappa _{ 1}^{4}\kappa _{ 2}\kappa _{3} - 256\kappa _{1}^{3}\kappa _{ 2}^{3} {}\\ & & -640\kappa _{1}^{3}\kappa _{ 2}^{2}\kappa _{ 3} + 192\kappa _{1}^{3}\kappa _{ 2}\kappa _{3}^{2} + 512\kappa _{ 1}^{2}\kappa _{ 2}^{3}\kappa _{ 3} + 1632\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3}^{2} - 128\kappa _{ 1}\kappa _{2}^{3}\kappa _{ 3}^{2} {}\\ & & -640\kappa _{1}\kappa _{2}^{2}\kappa _{ 3}^{3} - 128\kappa _{ 2}^{3}\kappa _{ 3}^{3} - 128\kappa _{ 2}^{2}\kappa _{ 3}^{4} + 16\kappa _{ 1}^{5} + 192\kappa _{ 1}^{4}\kappa _{ 2} + 512\kappa _{1}^{3}\kappa _{ 2}^{2} {}\\ & & +128\kappa _{1}^{3}\kappa _{ 2}\kappa _{3} - 640\kappa _{1}^{2}\kappa _{ 2}^{2}\kappa _{ 3} - 352\kappa _{1}^{2}\kappa _{ 2}\kappa _{3}^{2} - 64\kappa _{ 1}\kappa _{2}^{2}\kappa _{ 3}^{2} + 128\kappa _{ 2}^{2}\kappa _{ 3}^{3} - 64\kappa _{ 1}^{4} {}\\ & & -352\kappa _{1}^{3}\kappa _{ 2} - 128\kappa _{1}^{2}\kappa _{ 2}^{2} + 128\kappa _{ 1}^{2}\kappa _{ 2}\kappa _{3} + 128\kappa _{1}\kappa _{2}^{2}\kappa _{ 3} + 192\kappa _{1}\kappa _{2}\kappa _{3}^{2} + 16\kappa _{ 2}^{2}\kappa _{ 3}^{2} {}\\ & & +96\kappa _{1}^{3} + 192\kappa _{ 1}^{2}\kappa _{ 2} - 128\kappa _{1}\kappa _{2}\kappa _{3} - 16\kappa _{2}\kappa _{3}^{2} - 64\kappa _{ 1}^{2} - 16\kappa _{ 1}\kappa _{2} + 16\kappa _{1}. {}\\ \end{array} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chebanov, D., Mosina, N., Salas, J. (2016). On Stabilization of an Unbalanced Lagrange Gyrostat. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30379-6_6

Download citation

Publish with us

Policies and ethics