Skip to main content

Input-to-State Stability and H Performance for Stochastic Control Systems with Piece wise Constant Arguments

  • Conference paper
  • First Online:
Mathematical and Computational Approaches in Advancing Modern Science and Engineering
  • 1760 Accesses

Abstract

This paper addresses stochastic control system of differential equations with piecewise constant arguments (SEPCA ). The piecewise constant arguments are of delay type. The system is viewed as a hybrid (or particularly switched) system . This approach motivates the applicability of the classical theory of ordinary differential equations, but not of functional differential equations, and the design of a switching law. The main theme of this work is to establish the problems of input-to-state stabilization (ISS ), and H performance for a class of an uncertain control SEPCA. To analyze these result, a common Lyapunov function together with the techniques of differential inequalities and Razumikhin condition is used. A numerical example with simulations is presented to clarify the validity of the proposed theoretical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhmet, M.U., Aruğtaslan, D., Liu, X.Z.: Permanence of nonautonomous ratio-dependent predator-prey systems with piecewise constant argument of generalized type. DCDIS-A: Math. Anal. 15, 37–51 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Akhmet, M.U., Aruğaslan, D.: Lyapunov-Razumikhin method for differential equations with piecewise constant argument. DCDS 25 (2), 457–466 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alwan, M.S., Liu, X.Z., Akhmet, M.U.: On chaotic synchronization via impulsive control and piecewise constant arguments. DCDIS-Ser. B: Appl. Algorithms 22, 53–67 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Alwan, M.S., Liu, X.Z., Xie, W.-C.: Comparison principle and stability results for nonlinear differential equations with piecewise constant arguments. JFI 350, 211–230 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bao, G., Wen, S., Zeng, Z.: Robust stability analysis of interval fuzzy Cohen-Grossberg neural networks with piecewise constant argument of generalized type. Neural Netw. 33, 32–41 (2012)

    Article  MATH  Google Scholar 

  6. Busenberg, S., Cooke, K.L.: Models of vertically transmitted with sequential-continuous dynamics. In: Lakshmikantham, V. (ed.) Nonlinear Phenomena: In Mathematical Sciences. Academic, New York, pp. 179–187 (1982)

    Chapter  Google Scholar 

  7. Chen, L., Leng, Y., Guo, H., Shi, P., Zhang, L.: H control of a class of discrete-time Markov jump linear systems with piecewise-constant TPs subject to average dwell time switching. J. Frankl. Inst. 349, 1989–2003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cooke, K.L., Györi, I.: Numerical approximation of the solutions of delay differential equations on an infinite interval using piecewise constant arguments. Comput. Math. Appl. 28, 81–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cooke, K.L., Wiener, J.: A survey of differential equations with piecewise constants arguments. In: Busenberg, S., Martelli, M. (eds.) Delay Differential Equations and Dynamical Systems. Lecture Notes in Mathematics, vol. 1475, pp. 1–15. Springer-Verlag, Heidelberg/New York (1991)

    Chapter  Google Scholar 

  10. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  11. Györi, I., Hartung, F.: On numerical approximation using differential equations with piecewise-constant arguments. Period. Math. Hung. 56 (1), 55–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  13. Kokotovic, P., Arcak, M.: Constructive nonlinear control: Progress in the 90′s. In: Proceedings of the 14th IFAC World Congress, the Plenary and Index Volume, Beijing, pp. 49–77 (1999)

    Google Scholar 

  14. Nieto, J.J., Rodríguez-López, R.: Second-order linear differential equations with piecewise constant arguments subject to nonlocal boundary conditions. AMC 218, 9647–9656 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Nieto, J.J., Rodríguez-López, R.: Study of solutions to some functional differential equations with piecewise constant arguments. Abstr. Appl. Anal. art. no. 851691 (2012)

    Google Scholar 

  16. Ozturk, I., Bozkurt, F.: Stability analysis of a population model with piecewise constant arguments. Nonlinear Anal.: Real World Appl. 12, 1532–1545 (2011)

    Google Scholar 

  17. Sontag, E.D.: Comments on integral variants of ISS. Syst. Control Lett. 34, 93–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34 (4), 435–443 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sontag, E.D., Wang, Y.: New characterization of input-to-state stability property. IEEE Trans. Autom. Control 34 (41) 1283–1294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sontag, E.D., Wang, Y.: On characterization of input-to-state stability property. Syst. Control Lett. 24, 351–359 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Teel, A.R., Moreau, L., Nešic, D.: A unified framework for input-to-state stability in systems with two time scales. IEEE Trans. Autom. Control 48 (9), 1526–1544 (2003)

    Article  MathSciNet  Google Scholar 

  22. Wiener, J.: Generalized Solutions of Functional Differential Equations. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  23. Wu, Z.-G., Park, J.H., Su, H., Chu, J.: Stochastic stability analysis of piecewise homogeneous Markovian jump neural networks with mixed time-delays. JFI 349, 2136–2150 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad S. Alwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alwan, M.S., Liu, X. (2016). Input-to-State Stability and H Performance for Stochastic Control Systems with Piece wise Constant Arguments. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30379-6_34

Download citation

Publish with us

Policies and ethics