Skip to main content

Solutions of Time-Fractional Diffusion Equation with Reflecting and Absorbing Boundary Conditions Using Matlab

  • Conference paper
  • First Online:

Abstract

The main objective of this work is to develop Matlab programs for solving the time-fractional diffusion equation (TFDE) with reflecting and absorbing boundary conditions on finite and infinite domains. Essentially, there are three major codes, one for finding the exact solution of the TFDE and other two are for finding the numerical solution of the TFDE. The code for finding the exact solutions is based on the fundamental solution of the TFDE, whereas the codes for finding the numerical solutions are based on the explicit and the implicit finite difference schemes, respectively. Finally, we illustrate the effectiveness of the codes by applying them to TFDEs with sharp initial data and for various reflecting and absorbing boundary conditions both on finite and infinite domains. The results show the difference of solutions between the standard diffusion equation and the time-fractional diffusion equation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ali, I., Malik, N.A.: Hilfer fractional advection–diffusion equations with power-law initial condition; a numerical study using variational iteration method. Comput. Math. Appl. 68 (10), 1161–1179 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ali, I., Malik, N.A., Chanane, B.: Time-fractional nonlinear gas transport equation in tight porous media: an application in unconventional gas reservoirs. In: 2014 International Conference on Fractional Differentiation and Its Applications (ICFDA), Catania, pp. 1–6. IEEE (2014)

    Google Scholar 

  3. Chen, W., Sun, H., Zhang, X., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59 (5), 1754–1758 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fedotov, S., Iomin, A.: Migration and proliferation dichotomy in tumor-cell invasion. Phys. Rev. Lett. 98 (11), 118,101 (2007)

    Google Scholar 

  5. Jeon, J., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L., Metzler, R.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106 (4), 048,103 (2011)

    Google Scholar 

  6. Koch, D., Brady, J.: Anomalous diffusion in heterogeneous porous media. Phys. Fluids (1958–1988) 31 (5), 965–973 (1988)

    Google Scholar 

  7. Langlands, T., Henry, B.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205 (2), 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luchko, Y.: Anomalous diffusion: models, their analysis, and interpretation. Adv. Appl. Anal. 115–145 (2012)

    Google Scholar 

  9. Luchko, Y., Punzi, A.: Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. GEM Int. J. Geomath. 1 (2), 257–276 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Malik, N., Ali, I., Chanane, B.: Numerical solutions of non-linear fractional transport models in unconventional hydrocarbon reservoirs using variational iteration method. In: 5th International Conference on Porous Media and Their Applications in Science (Engineering and Industry, Eds, ECI Symposium Series, Volume) (Hawaii, 2014). http://dc.engconfintl.org/porous_media_V/43

  11. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (4), 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic, New York (1998)

    MATH  Google Scholar 

  14. Schneider, W., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30 (1), 134–144 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tabei, S., Burov, S., Kim, H., Kuznetsov, A., Huynh, T., Jureller, J., Philipson, L., Dinner, A., Scherer, N.: Intracellular transport of insulin granules is a subordinated random walk. Proc. Natl. Acad. Sci. 110 (13), 4911–4916 (2013)

    Article  Google Scholar 

  16. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge/New York (1995)

    MATH  Google Scholar 

  17. Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87 (5), 3518–3524 (2004)

    Article  Google Scholar 

  18. Wyss, W.: The fractional diffusion equation. J. Math. Phys. 27 (11), 2782–2785 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yuste, S., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42 (5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform timesteps for fractional diffusion equations. Comput. Phys. Commun. 183 (12), 2594–2600 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST) through the Science Technology Unit at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. 14-OIL280-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ali, I., Malik, N.A., Chanane, B. (2016). Solutions of Time-Fractional Diffusion Equation with Reflecting and Absorbing Boundary Conditions Using Matlab. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30379-6_2

Download citation

Publish with us

Policies and ethics